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Abstract—Recent research in texture-based ear recognition
also indicates that ear detection and texture-based ear recognition
are robust against signal degradation and encoding artefacts.
Based on these findings, we further investigate and compare the
performance of texture descriptors for ear recognition and seek
to explore possibilities to complement texture descriptors with
depth information. On the basis of ear images from visible light
and depth maps, we extract texture and surface descriptors from
full profile images. We compare the recognition performance of
selected methods for describing texture and surface structure,
which are Local Binary Patterns, Local Phase Quantization,
Histograms of Oriented Gradients, Binarized Statistical Image
Features, Shape Context and Curvedness. Secondly we propose
a novel histogram-based descriptor that performs feature level
fusion by combining two information channels to a new feature
vector. Our concept can either be applied for fusing two different
texture or two different surface descriptors or to combine texture
and depth information. Based on the results of the previous
experiment, we select the best performing configuration settings
for texture and surface representation and use them as an input
for our fused feature vectors. We report the performance of
different variations of the fused descriptor and compare the
behavior of the fused feature vectors with single channel from
the first series of experiments.

I. INTRODUCTION

As a consequence of increasing availability of high reso-
lution cameras, the outer ear with is unique shape has moved
into the focus of many forensic experts. These systems deliver
images that reflect the detailed and unique structure of the
outer ear and hence are suitable for automated personal iden-
tification. Moreover, cameras that capture video and depth in-
formation simultaneously have reached a state that make them
applicable in semi-controlled scenarios, such as surveillance at
ATMs, vending machines or border control. Recent research in
texture-based ear recognition also indicates that ear detection
and texture-based ear recognition are robust against signal
degradation and encoding artifacts, which implies that we can
achieve a good recognition performance, even from a distance
of several meters from the camera. Based on these findings,
we further investigate and compare the performance of texture
descriptors for ear recognition and seek to explore possibilities
to complement texture descriptors with depth information.

First proposed on 1989 [1], ear recognition using texture
and depth images has gained much attentions from the bio-
metrics and forensics community during the last years. Based
on the available data, the outer ear is widely regarded as
a unique, permanent and easy to capture characteristic. The
rich surface structure is especially valued for forensic image

analysis, where the outer ear is more frequently visible than the
face. Video footage can even provide material showing both
ears and the face, which pushes the interest in automated ear
recognition of criminal police agencies all other the world.

Due to the increasing attentions for ear recognition, re-
searches have shown that different techniques which have
originally been proposed for face recognition can also be
applied for ear recognition purposes. Among these features
are approaches for landmark extraction, such as Active Shape
Models [2] and SIFT [3] [4]. Key point detection and match-
ing was also successfully applied to 3D images [5] and
in combination with a global image descriptor as in [6].
Landmark and key point detection however, can be complex,
time consuming and incorporates implicit assumptions about
the capture scenario and object representation. Moreover the
process of landmark or key point extraction adds a potential
source for errors to the pipeline, that stacks with the probability
of a wrong segmentation. In other words, even if the ear has
been successfully detected, we can still get wrong landmarks
or misplaced key points from the feature extraction stage. We
hence focus on appearance features in this work.

In the field of appearance feature extraction from 2D
images, Damer and Fuhrer obtained good results with HOG [7]
and in [8] the authors use LBP in combination with different
techniques for feature subspace projection. In A complete
survey of ear recognition algorithms, their performance and
the databases the performance metrics were obtained with can
be found in [9].

The aforementioned selection of different approaches to
ear recognition have been obtained from different datasets and
hence are hard to compare with each other. The goal of this
work is to compare different texture and surface description
techniques with ear other and to give recommendations for the
optimal settings under a given scenario, which is represented
by a particular database. Based on the results on LBP and
HOG in previous work, LPQ and BSIF are likely to give good
results for ear recognition as well. However, LPQ and BSIF
have not been tested and compared to previous approaches
for appearance based ear recognition before. Moreover, we
compare the recognition performance of the texture image and
the depth image in order to see, which representation of the
ear contains the most distinctive information. We also compare
different projection methods for feature subspace creation. Our
experiments are conducted on three different datasets, which
are UND-J2 [10], AMI [11] and IITK [12]. Example images
from each of the database can be found in Figure 3.
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Fig. 1. Illustration of the experimental setup for our evaluations with all possible combinations between feature extraction, local histogram concatenation,
feature subspace creation and comparison.

Our second contribution is a combined histogram descrip-
tor, which combines 2D and 3D data. The combined histogram
descriptor is based on the work of Zhou et al. [13] and [14],
where two sources of data are combined to assign a given
magnitude from one source to a bin that is determined by
another source. The evaluation results for this descriptor are
based on the UND-J2 dataset.

II. SYSTEM OVERVIEW

As a first step, all images are transformed to gray scale and
the contrast is adjusted by using CLAHE [15]. Subsequently,
variations in rotation and scale are removed with cascaded
pose regression (CPR) [16]. With CPR, we estimate an ellipse
that encloses the ear. Based on the length of the major and
minor axis and the skew of the ellipse, we rotate and scale
the ear image in a way that the major axis of the ellipse is
vertical and as a predefined length. This is dome for the 2D
images and for the depth images, such that the normalized
images are still co-registered. Missing values in the 3D-Images
are interpolated with a linear function for computing potential
energy surfaces and a least squares approach [17]. Finally, all
images are resized to 100n×100 pixels. Examples images for
each database after preprocessing are displayed in Fig. 3.

After preprocessing, we extract appearance or surface de-
scriptors from overlapping grid cells and create fixed length
histogram descriptors. The histogram descriptors are either
computed on the basis of 2D images, depth images or both.
Depending on the number of grid cells, the number of dimen-
sions for each feature vector varies. For LBP, LPQ and BSIF
we used local windows of the sizes 33× 33, 20× 20, 10× 10
and 7 × 7 with different overlaps that are dependent on the
window size.

The dataset is now split into a training ans a testing set. The
training set is used to estimate a projection matrix for a feature
subspace. Based on the projection matrix, the remaining testing
images are projected into the feature subspace. We compare
the recognition performance of feature subspaces that were
created with PCA, LDA as linear projection techniques and
KPCA [18] and KFA [19] as non-linear projection techniques
1 Recognition is performed by a nearest neighbor classifier
using a selection of different distance metrics which are the
Euclidean distance (euc), city block distance (ctb), cosine
distance (cos) and mahalanobis cosine distance (mahcos). Parts
of the source code for this experiment are based on the PhD

1We also evaluated the system without any projection technique. The EER
vary between 10 and 20 %, when comparing the feature vectors directly,
without prior subspace projection.

Face recognition Toolbox. The whole data processing process,
including all intermediate steps in summarized in Figure 1.

Based on these experimental settings, we obtain perfor-
mance metrics for different combinations between the feature
extraction techniques, the size of the local windows, the
overlap between local windows and the projection technique
and the distance metric. In total we obtain more than 6000
different configuration settings, which we compared for this
study. Each of the possible combinations is tested with 10-
fold cross validation with a random selection for the training
and testing set for the computation of the feature subspace.

III. FEATURE EXTRACTION

A. Texture and Surface descriptors

Local Binary Pattern (LBP): LBP [20] encodes local
texture information on a pixel level by comparing the grey level
values of a pixel to the grey level values in its neighborhood.
The size of neighborhood is defined by a radius around the
pixel, which is at least 1 (for a neighborhood having 8 pixels).
Every pixel within the radius that has a larger grey level value
than the center pixel is assigned the binary value 1, whereas
all pixels with a smaller grey level value are assigned the
binary value 0. The binary values in the neighborhood pixels
are concatenated to form a binary string corresponding to the
center pixel. Only those binary strings which have at most two
bit-wise transitions from 0 to 1 (or vice-versa) are considered
- there are 58 such strings. This binary string is then mapped
to a value between 0 and 255.

The LBP-based ear descriptor is computed by first sliding
a window of a predefined size and overlap (step size in
pixels) in the horizontal and vertical direction over the LBP
image. From each sub window a local histogram with 256
bins is extracted. We compare the performance values of this
descriptor with various window sizes and overlap between
neighboring windows. We also compare the performance of
LBP using a radius of 1 (n-8 neighborhood) and radius 2 (n-
16 neighborhood).

Local Phase Quantization (LPQ): The concept behind
LPQ [21] is to transform the image into the Fourier domain
and to only use the phase information in the subsequent steps.
Given that a blurred image can be viewed as a convolution
of the image and a centrally symmetric point spread function,
the phase of a transformed image becomes invariant to blur.
For each pixel in the image, we compute the phase within a
predefined local radius and quantize the image by observing
the sign of both, the real and the imaginary part of the local

http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/
http://luks.fe.uni-lj.si/sl/osebje/vitomir/face_tools/PhDface/


phase. Similar to uLBP, the quantized neighborhood of each
pixel is reported as an eight digit binary string.

Given an image, the LPQ value is first computed for every
pixel. Next, local histograms with 265 bins are computed
within a sliding window. We compute the concatenated his-
togram descriptor for varying window sizes and with different
radii for the neighborhood of each pixel. In our experiments,
we compare LPQ with different radii, windows sizes and
overlap.

Binarized Statistical Images Features (BSIF):Inspired by
LBP and LPQ, BSIF [22] also computes a binary string for
each pixel in an image to represent the local structure of an
image. The values of each bit within the BSIF descriptor is
computed by quantizing the response of a linear filer. Each bit
in the string is associated to a particular filter and the number
of bites determines the number of filters used. As in LBP and
LBP the binary code word is then mapped to a real value
between 0 and 2x for x different filters. Finally we create
a histogram from the mapped values in the BSIF image for
describing the local properties of the image texture.

In our experiments, we use the standard filters, which repre-
sent eight different orientations of edges. As before, we extract
a local descriptor for different window sizes, overlap between
neighboring windows and different filter sizes and concatenate
each local histogram to a global histogram representation. For
all experiments, we use 8-bit code words and the 5× 5, 1× 1
and 17× 17 filters

Histogram of Oriented Gradients (HOG): Computa-
tion of the HOG [14] descriptor involves five steps, which
are the gradient computation, orientation binning, histogram
computation, histogram normalization and concatenation of
local histograms. The algorithm starts by computing the local
gradient by convolving a 3 × 3 region (HOG cells) with
two one-dimensional filters (−101) and (−101)T . The local
orientation at the center of each HOG cell is the weighted sum
of the filter responses of each pixel.

The local orientations within a larger sub-window, denoted
as block, are then quantized into bins in the [0, 2π] interval.
Subsequently, the image is divided into blocks of equal size
and a local histogram of quantized orientations is extracted.
Subsequently, the local histogram from each block is nor-
malized with the L2-norm. Finally, all local histograms are
concatenated to form the HOG descriptor for the image.

We evaluate the recognition performance of HOG using
8 × 8 HOG cells and 9 bin histograms, as well as 16 × 16
HOG cells and 12 bin histograms.

Surface Descriptors: For describing three-dimensional
structures in depth images, we use the shape index and cursed-
ness. Both descriptors are based on the principal curvature of
a shape and divide different surface structures into discrete
categories, which are represented by values between 0 and 1.
According to [23], the shape index for the maximum principal
curvature kmax at a given position p in the image and the
minimum principal curvature kmin, respectively, is defined as

S(p) =
1

2
− 1

π
arctan

(kmax(p) + kmin(p)
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Fig. 2. Example for feature level fusion for the creation of the combined
histogram descriptor.

Accordingly, the curvedness for a given image position can be
written as

C(p) =

√
k2max(p) + k2min(p)

2
. (2)

B. Combined Descriptor

IV. SYSTEM OVERVIEW

We compute descriptor that combines 3-dimensional and 2-
dimensional data, we extract local histograms from an image
region that is defined by a sliding window with a given size
and a given overlap between neighboring windows. For each
local window, we extract the code word images from both, the
texture images (2D) and the depth image (3D). The number
of bins can either be the total number of values that can occur
in the code word image, or any other number that divides
the value range of the descriptor into n equally sized bins
between the minimum and the maximum possible value code
word image.

Subsequently, we create a local histogram from these
features by using the code word (feature) from position I2D(p)
from the 2D-image for determining the bin. The code word at
position I3D(p) from the 3D-image determines the value that
is added to the bin size. This means that for each position
p local window i, we create a local histogram Histi with a
given number of bins in the following way:

Histi(I2D(p)) = Hist(I2D(p)) + I3D(p). (3)

All local histograms are normalized using the L2 norm
and them concatenated to a global histogram descriptor. An
example for the computation of a combined feature vector
using LPQ and the Shape Index is depicted in Fig 2. In steps
1 and 2 we compute a code word image using LPQ for the
texture image and the Shape Index for the depth image. In the
upper right corner of the Shape Index image, we can see an
interpolated region that clearly differs from the noisy signal
of the depth sensor. Information from both channels in then
fused in step 3, where the codeword from the texture image
determined the bin and the shape index from the depth is
used for adding a weight to this bin. Finally, the combined
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Fig. 3. Example images from UND-J2, AMI and IITK after geometrical
normalization with CPR and resize to 100× 100 pixels.

histogram from LPQ and Shape Index data is normalized and
then concatenated.

Obviously, this fusion scheme offers many different possi-
bilities for combining texture images and co-registered depth
images. We can either use the texture images for determining
the bin and the depth images for adding a weight to this
bin or vice versa. We will evaluate the performance of bot
options. Moreover, we can vary the number of bins to get
longer of shorter descriptors. Finally, this scheme also allows
us to combine two different feature vectors from texture images
or depth images. In our experiments we will explore different
combinations between the best performing configurations in
texture- and depth images, as well as different combinations
between texture descriptors in texture images and as the shape
index or curvedness for depth images.

V. EXPERIMENTAL RESULTS

For our experiments, we select all subjects with at least 5
samples from each of the databases. For each selected subject,
we then randomly pick 4 samples for training the projection
matrix and for serving as reference images. The remaining
samples are used for testing. For UND-J2 [10] we select 158
different subjects with 790 images in total. For AMI [11] the
experiments are based on 500 images from 100 subjects and
for IITK [12], we use 288 images from 72 different subjects.
The settings for the different algorithm configuration depends
on the algorithm. A configuration also indicates the projection
technique and the distance metric and is encoded as follows:

LBP: LBP - <radius; number of pixels> - <window
size> - <overlap> - <projection technique> -
<distance metric>

LPQ: LPQ - <radius> - <window size> - <overlap>
- <projection technique> - <distance metric¿

TABLE I. EQUAL ERROR RATE (EER) AND RANK-1 PERFORMANCE
(RANK-1) (IN %) FOR SELECTED CONFIGURATIONS ON DATASETS

UND-J2, AMI AND IITK. THE BEST CONFIGURATION FOR EACH DATASET
IS MARKED IN BOLD.

Algorithm UND-J2 AMI IITK
EER Rank-1 EER Rank-1 EER Rank-1

LPQ-3-20-10-LDA-cos 1.35 96.27 0.75 96.50 0.21 99.31
LPQ-5-33-15-LDA-cos 1.14 97.47 0.00 100.00 0.71 97.78
LPQ-11-20-10-LDA-cos 0.67 98.73 0.01 99.00 0.50 98.89
LPQ-11-33-15-LDA-cos 0.72 98.54 0.00 100.0 0.17 99.03

BSIF-5-20-15-LDA-cos 0.39 98.67 2.00 97.00 0,59 98,33
BSIF-5-20-15-PCA-cos 12,13 82,53 30.26 51.00 16.57 72.92
BSIF-11-20-5-LDA-mahcos 0.83 97.91 0.01 100.0 0.19 99.44
BSIF-11-20-10-LDA-cos 0.64 97.85 0.00 100.0 0.36 99.44
BSIF-11-20-15-LDA-cos 0.72 97.97 0.75 95.00 0,31 98.75
BSIF-17-20-15-LDA-cos 0.89 97.78 0.26 97.5 0.54 99.17

LBP-18-10-5-LDA-cos 0.98 97.34 0.68 97.50 0.69 98.47
LBP-18-20-5-LDA-cos 1.04 96.77 0.55 97.20 1.53 98.47
LBP-18-20-10-LDA-cos 1.73 96.77 0.66 97.50 1.94 97.92
LBP-18-20-5-LDA-cos 0.94 97.22 1.04 96.20 0.48 98.89
LBP-18-33-15-LDA-cos 7.88 69.24 5.14 82.70 0.68 97.87

HOG-8-18-LDA-cos 1,2743 97,8481 2.20 95.00 1.11 98.33
HOG-8-12-LDA-cos 1,44 96,77 2.61 93.50 1.66 97.64
HOG-16-18-LDA-cos 3.11 93.23 0.13 100.0 1.67 96.81
HOG-16-4-LDA-cos 12.11, 71.15 3.00 93 0.52 98.61
HOG-32-18-LDA-mahcos 14,72 66,52 16.25 48.50 3.30 93.47

TABLE II. EQUAL ERROR RATE (EER) AND RANK-1 PERFORMANCE
(RANK-1) (IN %) FOR TEXTURE AND DEPTH IMAGES IN DATASET UND-J2
AND SELECTED CONFIGURATIONS. THE BEST CONFIGURATION FOR EACH

DATASET IS MAKED IN BOLD.

Algorithm texture image (2D) depth image (3D)
EER Rank-1 EER Rank-1

BSIF-5-33-5-LDA-cos 1.01 96.96 2.09 95.31
BSIF-5-20-15-LDA-cos 0.39 98.67 1.81 95.25
BSIF-11-20-15-LDA-cos 0.72 97.97 2.58 93.23
BSIF-17-20-15-LDA-cos 0.89 97.78 5.43 85.39

LPQ-3-20-10-LDA-cos 1.35 96.27 2.81 95.24
LPQ-5-33-15-LDA-cos 1.14 97.47 3.59 90.32
LPQ-11-20-10-LDA-cos 0.67 97.97 2.34 93.80
LPQ-11-33-15-LDA-cos 0.72 97.59 0.61 98.86

LBP-18-20-15-LDA-cos 0.94 97.22 2.50 95.25
LBP-18-10-15-LDA-cos 0.98 97.34 3.51 91.51
LBP-18-33-15-LDA-cos 7.88 69.24 5.76 79.56

HOG-8-18-LDA-cos 1,27 97.85 3,58 91.96
HOG-16-18-LDA-cos 3.12 93.23 3.29 91.46

BSIF: BSIF - <filter size> - <window size> -
<overlap> - <projection technique> - <distance
metric>

HOG: HOG - <block size> - <number of bins> -
<projection technique> - <distance metric>

Surface:< SI | C> (SI = Shape Index; C = Curvedness)

The configuration settings for combined descriptors are en-
coded as follows: <bin configuration> - <number of bins> +
<magnitude configuration> + <window size> - <overlap> -
<projection technique> - <distance metric>



A. 2D and 3D Appearance Features

In Table I we have collected a selection of results from
our evaluations. In general, we observe that the overlap be-
tween neighboring windows does not have a major influence
on the performance on any of the databases. The general
expectation is, that smaller sizes of the local window yield
a better performance than configurations with a larger local
window. However, smaller local windows also imply that the
information in the local histogram is bound to a smaller portion
of the image, but also implies that the number of dimensions
in the feature increases. The relation between these two factors
should be balanced carefully. Moreover, the local window
size should be chosen in a way that the texture descriptor
is still able to extract a sufficient amount of information.
For instance, LPQ with a radius of 7 only extract 9 values
from a 10 × 10 local window, which is not sufficient for a
good recognition performance. In general, we recommend to
observe the sparsity of a local histogram for balancing the
feature extraction parameters and the local window size. In
our experiments, the best performance could be achieved, if
at least 25% of the bins in each local histogram are different
from zero.

Concerning the selection and parameters for the texture
descriptors, we achieved excellent performance indicators with
BSIF and LPQ. Some configurations for HOG and LBP result
in good performance values too, but are in general inferior to
the performance of BSIF and LPQ. The best configuration for
the grid size is, in many of the cases, the 20×20 window with
an overlap of 5 pixels between neighboring windows.

Concerning the selection of a good window size, HOG
plays a special role, compared to BSIF, LPQ and LBP. The
local and non-overlapping windows in HOG (also referred to
as HOG cells) are used directly for encoding local information,
whereas all other algorithms extract local information from a
sliding window. It is obvious that the window size has a string
impact on the performance of HOG. Based on our evaluations,
we recommend window sizes between 8×8 and 16×16 pixels.
Configurations with window sizes that are larger than 16× 16
pixels did not perform well. To our surprise, the number of
histogram bins plays a minor role for the effectiveness of the
HOG descriptor.

The best combination between feature subspace projection
technique and the distance measure is LDA in conjunction
with cosine distance. The performance of LDA with maha-
lanobis cosine distance is close and in many cases within
the confidence level. We hence prefer the simple solution
and recommend the cosine distance measure for together with
LDA for ear recognition using texture features. Other distance
measures resulted in significantly less recognition accuracy
than cosine and mahalanobis cosine distance and can hence
be discarded. Moreover, we observe that kernel methods for
feature subspace projection (KFA and KPCA) take longer time
for computation and yield less accuracy for recognition. The
performance of configurations using PCA and BSIF, LPQ
or LBP is between two and 10 times worse than LDA,
depending on the database and feature extraction algorithm.
For configurations using HOG, the performance of PCA is
similar to LDA.

In Table II we compare the performance of 2D and 3D

images using selected configurations from the previous texture
recognition configurations. The performance of depth images
is always lower than for texture images, which can easily be
explained by the fact that we are using feature vectors that were
originally designed for describing texture features, not surface
structures. Moreover, the surface structures can be noisy. Still
we can conclude that texture descriptors are also capable to
represent individual surface structures in depth images. We also
observe that a good performance for a particular configuration
of a texture descriptor also indicates a good performance for
the same configuration in the depth image. We conclude from
this that texture descriptors can be used to describe surface
structure in depth images as well and that the behavior of the
feature vectors for texture and depth images is similar.

B. Combined Histogram Features

A selection of evaluation results from the second series
of experiments is summarized in Table V-B. Compared to
the results on texture images in the previous experiment, the
recognition performance could not be improved by fusion
texture and depth images.

The best combination in our experiments was to use
the texture information for defining the bin and the depth
information for computing the magnitude. In many cases the
results of these configurations were similar to the behavior of
the texture based pipelines. This means that LDA with cosine
distance still appeared to be the best combination for most of
the combined feature descriptors and that the overlap between
neighboring 20× 20 windows should be 15 pixels.

An exception to this is LBP, where we observed low
performance rates for all combined descriptors. Moreover we
also found that the number of bins should be the same as for
the texture descriptors only (namely 256). All configurations
with a smaller number of bins performed significantly worse,
which is due to a loss of information when several bin
descriptors are mapped to the same bin. The fact that the
combined descriptors do generally perform worse than the
texture descriptors may be explained by the fact that the depth
channel in noise, which can be seen in the example image
on the right hand side in Fig. 2. Smoothing however, does
not improve the performance, because smoothing also removes
details from the ear structure. Artefacts from the interpolation
process may also affect the recognition performance.

Using texture descriptors in the texture and the depth
channel appears to be infeasible. Additionally, the usage of
the noise depth channel for bin selection also yields low
recognition rates and can hence not be recommended. The
fact that the number of bins for combined histograms using
the depth image for bin selection and the texture image for
the bin magnitude suggests, that the histogram for these feature
vectors is very sparse. Apparently, the loss of information from
merging neighboring bins does not affect the performance.

VI. CONCLUSION

Texture descriptors that were originally proposed for face
recognition or other computer vision tasks can also be applied
for ear recognition in texture and depth images. Our extensive
evaluations show that the best performance for three different
datasets is achieved with the LPQ and the BSIF descriptor in



TABLE III. EQUAL ERROR RATE (EER) AND RANK-1 PERFORMANCE
(RANK-1) (IN %) FOR SELECTED COMBINED DESCRIPTORS.

Algorithm Performance
EER Rank-1

2D bins, 3D magnitude
BSIF-5-256-SI-20-15-LDA-cos 0.95 97.53
BSIF-5-256-C-20-15-LDA-cos 1.32 96.08
LPQ-3-256-SI-20-10-LDA-cos 1.96 93.67
LPQ-3-256-C-20-10-LDA-cos 3.47 88.16
LBP-3-256-SI-20-15-LDA-cos 18.53 36.65
LBP-3-256-C-20-15-LDA-cos 19.60 30.76

3D bins, 2D magnitude
SI-64-LBP-18-20-15-LDA-cos 26.06 19.24
SI-256-LBP-18-20-15-LDA-cos 27.35 18.54
SI-256-BSIF-5-20-15-LDA-cos 10.98 60.89
SI-8-BSIF-5-20-15-LDA-cos 12.27 61.58
SI-64-BSIF-5-20-15-LDA-cos 9.15 69.94
SI-256-LPQ-3-20-15-LDA-cos 19.40 37.66
SI-32-LPQ-3-20-15-LDA-cos 8.89 74.74
C-256-LBP-18-20-15-LDA-cos 33.43 9.11
C-64-LBP-18-20-15-LDA-cos 44.46 2.91
C-256-BSIF-5-20-15-LDA-cos 8.89 74.75
C-8-BSIF-5-20-15-LDA-cos 31.14 17.48
C-64-BSIF-5-20-15-LDA-cos 10.47 64.57
C-256-LPQ-3-20-15-LDA-cos 16.43 46.14
C-32-LPQ-3-20-15-LDA-cos 32.48 15.76

Texture descriptors (2D, 3D)
BSIF-5-256-LPQ-3-20-15-LDA-cos 4.21 85.25
BSIF-5-256-LBP-18-20-15-LDA-cos 15.18 53.54
LPQ-3-256-LBP-18-20-15-LDA-cos 26.61 18.04
LPQ-3-256-BSIF-5-20-15-LDA-cos 2.67 94.75
LBP-18-256-LPQ-3-20-15-LDA-cos 14.13 56.14
LBP-18-256-BSIF-5-20-15-LDA-cos 14.15 54.62

conjunction with LDA as dimensionality reduction methods
and the cosine distance for a nearest neighbor classifier. The
size and overlap of the local window should be balanced
with the parameters for the feature extraction approach. In our
experiments, we found that smaller local windows with more
spatially bound descriptors do not improve the performance,
because smaller radii for the local descriptors are more vulner-
able to noise and the number of dimensions in the concatenated
histogram becomes overly long.

We also proposed an approach, where texture and depth
data is fused on the feature level and evaluated the perfor-
mance. However, the performance of the combined descriptor
turned out to be inferior to comparable configurations, where
only the texture data is used. The usage of surface descriptors
does not allow for a linear assignment of histogram bin,
because the resulting histograms are sparsely populated with
large magnitudes in a small number of bins.

Even though the used of histogram-based texture descrip-
tors provides a method for generating compact feature vectors,
we observer hat the local histograms are sparsely populated.
We plan to word towards a binary representation of the local
feature vectors with the goal of providing a fast and accurate
ear recognition system.
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