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A B S T R A C T

Speaker verification becomes more important as a biometric key se-
curity solution in industry, forensic, and governmental terms. Tele-
phone-based authentication concepts ensuring purposes of data pri-
vacy get more popular e. g., data encryption on mobile devices, or
user validations on contact-centers. Further, forensic speech analysis
is relevant to i. e. lawsuits where the origin of recorded yells for help
is decision-making to distinguish between self-defence or homicide.

Current researches emphasise on text-independent scenarios which
e. g., verify on randomised pass-phrases in short duration effort, and
on analysing duration-variant speech samples which comprise du-
rations of one second up to many minutes. Thereby, speaker char-
acteristics are modelled by statistical patterns where state-of-the-art
research systems prefer template-probe to model-based comparisons,
since model-based approaches were shown to be less accurate and
having too high computational efforts in duration-variant scenarios.
In contrast, template-based systems are known to have disadvantages
in short-term scenarios. State-of-the-art researches comprise identity
vectors (i-vectors) which describe the speaker-characteristic offset to
an universal background model.

The applicability of i-vectors will be evaluated in this thesis by com-
paring i-vector system to well-established model-based approaches
on an industry short duration scenario. Thereby, the i-vector approach
will be shown not only to operate robust and fast, but also augment
existing technologies, such that equal error rates below 0.5% can be
achieved. Further, a new duration-mismatch compensation technique
will be presented that increases the robustness and performance of
i-vector systems in duration-variant scenarios. This new method was
evaluated within a current international evaluation of the National
Institute of Standards and Technology (NIST) which examines state-
of-the-art i-vector systems: the NIST baseline system could be signifi-
cantly outperformed by a 19% relative-gain in terms of minimum de-
tection costs. Furthermore, this thesis provides a speaker verification
framework design which is based on the ISO/IEC 19795-1:2006 Bio-
metric Performance Testing and Reporting — Part 1: Principles and Frame-
work standard.
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Z U S A M M E N FA S S U N G

Sprecherverifikation wird immer gefragter für biometrische Lösun-
gen kommerzieller, forensischer und staatlicher Belange. Um Daten-
missbräuchen vorzubeugen, gewinnen Telefon-basierte Authentifika-
tionsalgorithmen bspw. zur Datenfreigabe auf mobilen Endgeräten
oder zur Nutzervalidierung in Call-Centern mehr und mehr an Po-
pularität. Ferner sind forensische Sprecheranalysen für bspw. Rechts-
prozesse relevant, in denen die Klärung des Ursprung eines aufge-
nommenen Hilfeschreies über Notwehr oder Mord entscheiden kann.

Im Fokus aktueller Forschungsfragen stehen hierbei text-unabhän-
gige Szenarien wie bspw. Kurzzeit-Verifikationen mittels randomi-
sierter Passphrasen und Analysen von Sprachaufnahmen, deren Dau-
ern von unter einer Sekunde bis hin zu mehreren Minuten sehr stark
variieren kann. Dabei werden Sprechercharakteristiken anhand von
stochastischen Merkmalen modelliert, wobei moderne Systeme mehr
auf Vergleichen extrahierter Muster als auf Modell-basierten Analy-
sen aufbauen, da Sprechermodelle in sehr variablen Szenarien als zu
ungenau und zeitaufwändig gelten, wo hingegen Muster-basierte Ver-
fahren Nachteile bei Kurzzeitszenarien aufweisen. Aktuelle Forschun-
gen basieren hierbei auf Identitätsvektoren (i-vectoren), welche den cha-
rakteristischen Unterschied eines Sprechers zu einem universellen,
akustischen Modell beschreiben.

Die Anwendbarkeit von i-vectoren wird im Rahmen dieser Arbeit
an einem industriellen Kurzzeitszenario mit bekannten Modell-ba-
sierten Verfahren verglichen. Dabei wird nicht nur aufgezeigt, dass
der i-vector Ansatz sehr schnelle und akkurate Verifikationen ermög-
licht. Im Vergleich zu Modell-basierten Verfahren bieten i-vectoren
zusätzliche Informationen, sodass Gleichfehlerraten unter 0.5% er-
reicht werden können. Ferner wird ein Verfahren zur Steigerung der
Robustheit und Performanz von i-vectoren in Szenarien mit sehr stark
variierenden Aufnahmedauern vorgestellt, das im Kontext einer ak-
tuellen Evaluation des National Instituts of Standards and Technol-
ogy (NIST) zu i-vectoren positiv validiert werden konnte: im Ver-
gleich zum NIST System wurde die Verifikationsgüte um 19% gestei-
gert. Weiterhin wird in dieser Thesis ein Sprecherverifikationsframe-
workdesign vorgestellt, das auf dem ISO/IEC Standard 19795-1:2006

Biometric Performance Testing and Reporting — Part 1: Principles and
Framework basiert.
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Information is not knowledge.
Knowledge is not wisdom.

Wisdom is not truth.
Truth is not beauty.
Beauty is not love.
Love is not music.
Music is the best.

— Frank Zappa, 1979.
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Part I

B I O M E T R I C S P E A K E R V E R I F I C AT I O N



1
I N T R O D U C T I O N

In past years speaker recognition has been incorporated in govern-
mental, forensic, and industry applications [1] with a wide-spread
scope ranging from court-cases [2] over preventing contact center
frauds [3] to key security solutions for high-secure financial transac-
tions [4]. Within conventional speaker recognition systems character-
istic traits of an individual’s voice are extracted in order to compare
them against voice reference data (templates) of known identities, i. e.
speakers can either be verified or identified.

1.1 motivation

The atip GmbH designs, implements, and hosts voice applications and
supplies many related fields, such as the recognition of speakers. Dur-
ing the last years several Bachelor and Master theses were supervised
by atip GmbH aiming continuous-time speaker verification, score nor-
malisations, template protection, and speaker recognition algorithms
comprising Support Vector Machines and Joint Factor Analysis (JFA)
methods. Concurrent to this thesis, Hegenbart [5] and Billeb [6] were
evaluating JFA and template protection methods, respectively. Further,
collaborative projects with Center for Advanced Security Research Darm-
stadt (CASED) were started for integrating speaker recognition into
the Modular Biometric Authentication Service System for Android mo-
bile phones, and fusing speaker and gait recognition systems.

In 2012 the atip GmbH participated in the Speaker Recognition
Evaluation (SRE) organised by the National Institute of Standards and
Technology (NIST). Techniques mostly submitted by NIST SRE’12 partic-
ipants comprised JFA and identity-vector (i-vector) approaches where
i-vectors were motivated in 2011 [7] as a special case of the JFA. Within
the last years the i-vector approach became so well-established due to
its extremely fast processing and high performance that NIST hosts
the current 2013–14 i-vector challenge which runs in parallel to the
time frame of this thesis. Hence, the thesis emphasis is put on the
research of i-vectors.

1.2 research questions

This thesis investigates the performance of i-vector systems in short
duration scenarios, which are important to e. g., user verifications
during contact-center calls, and how issues on duration-variant sce-
narios that were reported by the speaker recognition community can

2



1.3 contribution of work 3

be compensated, which is relevant to e. g., continuous-time speaker
verifications. Thereby, the following questions will be addressed:

1. Is the performance of the i-vector approach applicable on short duration
scenarios?
This is measurable in terms of an Equal Error Rate (EER) be-
low 5%, a FMR100 under 10% (reporting the genuine mismatch
rate on an impostor mismatching rate of 1%), a minimum detec-
tion cost below 0.554 (average of the primary systems on NIST

SRE’12), a score entropy below 1
3 , and a real-time performance

that is not 5% larger than the real-time performance of the base-
line approaches.

2. Do i-vector systems deliver new information to approaches that are
known to perform well on short duration samples?
The information gain can be shown when the entropy of well-
performing systems is reduced due to fusions with i-vector sys-
tems.

3. i-vectors were shown in the speaker recognition community to
perform robust on long duration samples where on short dura-
tion samples immense performance break-downs could be ob-
served; leading to a third research question: are these mismatches
compensable e. g., on the score-level domain?

1.3 contribution of work

By investigating the questions on short but constant durations of ut-
terances, new technologies will be examined and shown to be appli-
cable as well. Then, current fusion and calibration techniques will
be used to improve the performance and robustness of well-known
speaker modelling techniques by i-vector-based information, such that
significant gains will be demonstrated by e. g., a 56% improved EER

and a 36% improved detection cost. Therefore, analyses will be per-
formed on a speech corpus containing sequences of German digits.
Further, for reproducibility purposes, a speaker verification frame-
work design will be proposed and implemented where quality is en-
sured by the application of common tools among the speaker recog-
nition community, and an system design that is based on standards
of the International Organization for Standardization (ISO) and the
International Electrotechnical Commission (IEC).

Evaluations regarding to duration-variant scenarios will be per-
formed on the the NIST-available database from the 2013–14 NIST

i-vector challenge. Duration-depending i-vector subspace mismatches
will be pointed out and effective compensation techniques will be
analysed. In this thesis a new i-vector score normalisation method will
be presented, evaluated in comparison to the international speaker



1.4 organisation of work 4

recognition community, and shown to yield significant gains in per-
formance and robustness compared to the NIST baseline system.

1.4 organisation of work

The thesis is organised in three parts: biometric speaker verification in
general, evaluation of speaker verification in short-duration scenarios
and on varying sample durations, and the appendix with bibliogra-
phy. The chapters of the following two parts are organised as follows:

• Chapter 2 introduces speaker recognition fundamentals, namely
biometrics as a field of forensics and pattern recognition. After
introducing the design of biometric systems and biometric per-
formance measurements, forensic evidence strength as perfor-
mance metric is explained as well. Then, general pattern recog-
nition methods in speaker recognition are discussed.

• Chapter 3 explains speaker verification methodologies begin-
ning from speech signal processing to i-vector extraction, scoring
and score post-processing methods.

• Chapter 4 emphasises techniques on short-duration speaker ver-
ification and on compensation varying sample duration effects.

• Chapter 5 presents the implemented framework design for bio-
metric speaker verification systems.

• Chapter 6 analyses evaluation results of short-duration exper-
iments, and on compensation varying duration effects on the
2013–14 NIST i-vector machine learning challenge.

• Chapter 7 forms conclusions and points out further research
topics.



2
F U N D A M E N TA L S

This chapter shows speaker recognition related work from forensic
theory of optimal Bayes decisions, across characteristic-independent
biometric standards, general speech processing technologies, to com-
mon pattern recognition methodology. Pattern recognisers have been
shown to effectively handle speech signal features in terms of auto-
matic speech recognition [8, 9], language recognition [10, 11], and,
speaker recognition [12, 13] as well. Thereby, speech is processed to
signal feature vectors, such that biometric systems are able to apply
pattern recognition methods, which are well-established among com-
puter scientists.

2.1 forensic evidence and bayesian actions

Forensic science transforms judiciary questions into scientific ques-
tions, e. g. how likely did a suspect interact with a certain environment?,
which may become an essential evidence in the endeavour finding
the truth, but does not necessarily answer questions like did a sus-
pect commit a specific interaction or crime?. Those questions lead into
decisions that are province to courts and not to be made by forensic
experts and their investigations [14]. Forensic investigations associate
contact of two objects by traces, e. g. blood spots to a concrete individ-
ual or a subject’s contact with a speech recording device. On contact,
traits are transferred between both objects, e. g. due to traces or in
form of patterns [14].

In terms of speaker recognition, forensic investigations start with
the recorded utterance ω as a transient, digital trace or biometric
sample, respectively. A speaker recogniser’s task is to associate a sam-
ple ω with a concrete individual giving the evidence probability. Ev-
idence presented in a case at law can be regarded as data, and the issue to
be decided by the court as a hypothesis under test [15]. Biometric systems
can measure the evidence by the likelihood ratio of the prosecutor hy-
pothesis H0 to the defence hypothesis HA, which argue a subject to
have the same identity as the claimed identity or not. Either of both
likelihood probabilities are calculated against the sampleω. Evidence
reporting is done by a recognisers score S having the interpretation
of likelihood ratios [16, 17]:

S =
P(ω|H0)

P(ω|HA)
. (1)

5
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2.1.1 Bayesian decisions

Court fact finders, e. g. jury or judge, can use the Bayes’ theorem
multiplying posterior odds of the likelihood ratios with a factor of
prior odds π̃, which are determined by the court after considering other
evidence [15, 16, 17]:

P(H0|ω)

P(HA|ω)
=

P(ω|H0)

P(ω|HA)

p(H0)

p(HA)
= Sπ̃, (2)

π̃ =
p(H0)

p(HA)
. (3)

Hence, more complex legal questions can be answered by using com-
binations according to Bayesian theory of posterior odds and likeli-
hood ratios from several evidences.

2.1.2 Bayesian actions

Bayesian decisions can be concluded according to the evidence. These
decisions result into Bayesian actions a, e. g. accept and reject H0 in
terms of a two hypotheses test. In that case one of two actions could
be determined by e. g. comparing a score S to a certain threshold t.

Fig. 1 illustrates the relationships of the hypotheses, evidence, Baye-
sian decisions, Bayesian actions, hypothesis-action-classification, evi-
dence measure performance, and evidence strength according to [18,
19, 20] Thereby, evidence reporting strength can be seen as entropy
[18] and the hypothesis-action-classification can be interpreted as a
cost matrix where genuine and impostor classifications have zero cost
and false matches (FMs) and false non-matches (FNMs) can be set with
application-depending costs CFM, CFNM, which are a cost-based inter-
pretation of π̃.
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Figure 1: Relationships between Bayesian decision, actions, hypotheses, and
their effects according to [19]
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2.2 biometric systems

Biometric systems have the purpose of recognising individuals based
on their behavioural and physiological characteristics [21]. This sec-
tion will give a brief overview of biometric characteristics, a general
system architecture from sensory data acquisition to recognition de-
cisions, common error-rates and a brief view on voice-based verifica-
tion.

Since many communities are dealing with biometrics a harmonised
biometric vocabulary [21] has been assembled to reduce vocabulary-
and notation-based barriers between all communities. Hence, this
thesis is written with respect to a harmonised biometric vocabulary,
ISO/IEC 2382-37:2012 [21]: Information technology — Vocabulary — Part
37: Biometrics. The complete notation used within this thesis can be
found in appendix A, which is also chosen with respect to the speaker
recognition community.

2.2.1 Biometric characteristics

Biometric characteristics are physiological and behavioural character-
istics of individuals by which they can be distinguished, e. g. by Gal-
ton ridge structure, face topography, facial skin texture, hand topography,
finger topography, iris structure, vein structure of the hand, ridge structure
of the palm, retinal pattern, handwritten signature dynamics [21].

Tab. 1 classifies selected characteristics according to Jain et al. [1]
by universality (U), distinctiveness (D), permanence (P), collectabil-
ity (C), performance (p), acceptability (A) and circumvention (c), for
detailed descriptions, see appendix B. In comparison, physiological
characteristics have advantages to behavioural in terms of universal-
ity, distinctiveness, permanence, performance, and circumvention. In
contrast, behavioural characteristics are easy to collect and higher ac-
cepted within the society [1]. By combining systems of different char-
acteristics, sensor types and processing methods as single subsystems
to a multi-modal system [21], higher biometric performance might
be achieved. Thereby, different modalities imply a difference in char-
acteristic type, e. g. fingerprint and voice. Although, a characteristic
type might have physiological and behavioural characteristics.

2.2.2 Voice-based biometrics

Voice is referred to as a combination of physiological and behavioural
traits, as it is based on physiological characteristics, e. g. vocal tracts,
glottal pulse, mouth, nasal cavities, and lips, as well as on behavioural
characteristics, such as idiolect, semantics, accent, pronunciation, and
prosody [1, 12]. Furthermore, human voice is influenced e. g., by a
speaker’s medical conditions, emotional states, or ageing, which caus-
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Table 1: Comparison of biometric characteristics-based on their technology,
excerpt from Jain et al. [1]: high (H), medium (M), and low (L)

Characteristic U D P C p A c

Physiological

DNA H H H L H L L

Fingerprint M H H M H M M

Iris H H H M H L L

Physiological and behavioural

Voice M L L M L H H

Behavioural

Gait M L L H L H M

Keystroke L L L M L M M

Signature L L L H L H H

ed Jain et al. [1] to estimate a low permanence. However, Kelly et
al. [22] recently proofed that vocal tract ageing effects are easy to
compensate1, thus extracted features describing a characteristic can
be assumed to be stable over a long period of time. Jain et al. also
assumed a high difficulty to model text- and language-independent
speaker recognition systems assuming a 2000 state-of-the-art phone-
based speaker modelling. Though, efficient and robust voice mod-
elling approaches were introduced over the last years in terms of JFAs

and i-vector developments [7, 23, 24, 25] compensating not only differ-
ent languages but also sensory effects, such as background noise.

2.2.3 General biometric system

Due to the wide-spread variation of biometric characteristics and
modalities, many pattern recognition system designs are possible.
However, since all have in general same processing flows, a gen-
eral biometric system framework by components is standardised in
ISO/IEC 19795-1 [26]. Fig. 2 illustrates the components and process-
ing flows of a general biometric system according to [26, 27] includ-
ing data capture, signal processing, data storage to an enrolment
database, comparison, and decision making.

2.2.3.1 Data capturing

Before either of both recognition procedures, verification or identifi-
cation, a biometric subject needs to be enrolled. The enrollee presents
himself/herself to the system by declaring his/her identity and by
sensory interaction to capture the enrollee’s characteristics. Thus, a

1 Ageing compensation is not in the focus of this thesis.



2.2 biometric systems 9

Biometric

characteristics

Biometric 

sample

Data Capture

Signal 

Processing

Enrolment database

Reference 

creation

Comparator

Identity

claim

Verified?

Verification

outcome

DecisionSimlarity 

score(s)

Enrolment

Verification

Reference

Reference

Match?

Identified?

Identification

outcome

Candidate?

Identification

Threshold

Decision

policy

Probe

Features

Segmentation

Sensor

Quality control

Feature extraction

Presentation

Re-acquire

Figure 2: General biometric system, according to [26, 27]

sensor can be a camera capture, e. g. of an ear or a face, or a micro-
phone capturing a humans voice. The captured data is considered as
an individual’s sample which is afflicted by user and environmen-
tal between- and within-variances [1, 13]. Since environmental con-
ditions, e. g. illumination, or background noises, might change, the
environment, might change e. g. indoor and outdoor, users change
by themselves, e. g. temporary injuries, or growing older, and char-
acteristics of different user should vary, such that individuals can be
distinguished.

Data capture of verification and identification differ in terms of an
identity claim which is not necessary during identifications, because
the identity should be the recognition result, meanwhile a verification
outcome determines whether an user’s sample matches enrolment
templates or models of a claimed identity.

2.2.3.2 Signal processing

During signal processing, features are extracted from a biometric
sample [26]. Therefore, samples may be segmented with respect to
e. g. orientation concerns or specific sub-sequences. ISO [26] defines
segmentation as locating a subject’s biometric characteristic within a
whole sample. Thus, as far as possible de-noised features can be ex-
tracted, hence quality control processes are recommended as well in
order to re-acquire another sample if necessary.

Depending on the systems mode, enrolment or recognition, feature
extractions will produce subject templates or probes, which repre-
sent the individual’s biometric characteristic. Sometimes the template
comprises just the features [26]. However, both, templates and models,
are referred to as references [21, 26, 27].

References are stored in an enrolment database, which in terms of
running applications needs to ensure data security and privacy con-
cerns of e. g. biometric samples and templates [28, 29, 30]. However,
this project places emphasis more on research than on full system
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implementations, hence template protection is not focused on this
thesis.

2.2.3.3 Comparison

Similarity scores evolve from comparing probes with references, such
that likelihoods express their similarity. Comparisons can rely on tem-
plates or models [21, 26]: on template-probe comparisons either of
both comprise extracted features, hence easy comparison approaches
are feasible, such as the cosine distance as similarity measure. On
model-probe comparisons, probes are estimated by e. g. statistical
models, such that emission probabilities are convenient for likelihood
scoring. Each likelihood scoring can be interpreted as evidence in
forensic terms, see section 2.1.

For verification only the comparison against the claimed identity’s
reference is necessary. In contrast, for identification a probe is com-
pared against all references [21, 26].

2.2.3.4 Decision making

Decisions are made with respect to the recognition mode: on veri-
fication, scores are compared with thresholds to conclude matches
or non-matches, which are concerned within decision policies to re-
turn verification outcomes of verified and not-verified [21, 26], likewise
accepted or rejected in terms of Bayesian actions as in section 2.1.2.
On identification, identity candidates are determined by threshold-
score comparisons. An identification outcome of identified or uniden-
tified is then concluded by candidate lists with respect to decision
policies [21, 26]. Either of both outcomes are Bayesian decisions caus-
ing Bayesian actions as mentioned in sections 2.1.1,2.1.2. This thesis
places emphasis only on verification.

2.2.4 Subsystem fusions

Biometric fusion promises higher accuracy by combining various sys-
tems differing in at least one of the following: sensors, modalities, algo-
rithms, instances or presentations [31]. According to the technical report
ISO/IEC 24722:2007 [31] several simultaneous or sequential presenta-
tions can be fused on four levels2:

• Sample level,

• Feature level,

• Score level, and,

• Decision level.

2 The technical report refers also to an additional level: future undefined fusion method(s),
which were not concerned within this thesis.
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Sample level fusion can be, e. g. sequentially, merging of image se-
ries to one image, or simultaneously, capturing characteristics by mul-
tiple sensors which are then merged. Fusions on feature level process
data from multiple extractors, e. g. histogram gradients and wavelet
coefficients. Score level fusions apply score normalisation techniques
on scores of multiple comparators, such as linear regression. Decision-
based fusions are consolidating logical outcome values of all sub-
systems by e. g. AND/OR constraints or weighted sums [31]. Fig. 3

shows an exemplary combination of four fusion levels on two sam-
ples according to [31].

Sample
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Sample 1
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Feature 

extraction

Feature 

extraction

Feature 

extraction

Feature 

fusion

Comparison 1

Comparison 2

Score

fusion
Decision 1

Decision 2
Decision 

fusion

Verification

outcome

Figure 3: Combination example applying four fusion level, see [31]

Furthermore, fusions are categorised with respect to multi-modal-
ities (multiple modalities, algorithms, characteristics, and sensors),
multi-algorithmics, multi-instances (multiple instances of each charac-
teristic), multi-sensorial, and multi-presentation (same modality, algo-
rithm, characteristic, sensor, but multiple samples e. g. several frames
from a video camera capture of face image [31]).

However, since all subsystems are applied on statistically depen-
dent data, they should concern correlation between modalities, due to
identical samples, between feature values, among instances due to common
operating procedures, and among instances due to subject behaviour [31].
Score level-based multi-algorithmic fusions will be important to this
thesis.

2.2.5 Biometric performance

Biometric performance addresses recognition accuracy, which is re-
duced to errors on each processing step from subject presentations to
recognition outcomes. Sensors which fail to capture biometric char-
acteristics increase the failure-to-capture (FTC) rate. If features can-
not be extracted from captured samples, a re-acquisition is necessary,
hence the failure-to-acquire (FTA) rate increases, which is defined by
the number of failed feature extraction attempts Nfailed extractions, the
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total number of feature extraction attempts Nextraction attempts, and the
FTC rate [21, 26, 32]:

FTA = FTC + (1− FTC)
Nfailed acquisitions

Nacquisitions
. (4)

Uncompleted enrolment cases are measured by the failure-to-enrol
(FTE) rate as the proportion of the population for whom the system fails to
complete the enrolment process [21, 26, 32].

2.2.5.1 Algorithmic verification error rates

Biometric verification performance addresses the proportion of false
matches (FMs) and false non-matches (FNMs) as mentioned in section
2.1.2. Thereby, the False Match Rate (FMR) is defined by the integral
over all impostor scores (HA is true) greater than a threshold t [1, 21,
26]:

FMR(t) =
∫∞
t

p (S(ωclaimant|Ωreference)|HA)dS, (5)

with respect to reference and claimant samples Ωreference,ωclaimant.
The False Non-Match Rate (FNMR) represents the proportion of all
non-matched genuines and is defined by the integral over all genuine
scores (H0 is true), such that they were not matched due to a thresh-
old t [1, 21, 26]:

FNMR(t) =
∫t
−∞ p (S(ωclaimant|Ωreference)|H0)dS. (6)
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Figure 4: Genuine and impostor score distributions with FNMR, FMR

Fig. 4 shows the relationship between genuine and impostor dis-
tributions as probability density functions (pdfs) towards FNMR and
FMR on generic scores3 with respect to a threshold t.

3 Scores were computed by 10 000 genuine scores having an offset of +2 and 10 000
impostor scores having a scaling of 1.5 with an −3 offset.
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Both error rates are representing a biometric system’s threshold-
dependant tradeoff between security (rejecting/accepting impostors)
and user-friendliness (accepting/rejecting genuines). Hence, a high-
performance biometric system with security focus should have a very
low FMR and a justifiable FNMR [1]. This tradeoff can be represented
by e. g. Receiver Operating Characteristic (ROC) curves [33], which
compares both error rates threshold-wise, see fig. 5. Thereby, the Area
Under Curve (AUC) represents the probability that a biometric system
scores a randomly chosen genuine attempt higher than a randomly
chosen impostor attempt [33].
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System performance

Figure 5: Receiver Operating Characteristic example with area under curve

By displaying both ROC axis in a logarithmic manner and using
the FNMR instead of 1− FNMR, a biometric system’s tradeoff can be
displayed in a more natural manner, since all scores are in a logarith-
mic manner as well [34]. Thus, NIST [34] motivated Detection Error
Tradeoff (DET) diagrams such as in fig. 6 according to the example
in fig. 4. Due to the logarithmic scale curves appear in a linear man-
ner, hence various system performances can be easy visually com-
pared by their distances. An optimal biometric system would have
FMR = FNMR = 0. DET plots also provide easily readable perfor-
mance metrics:

• Equal Error Rate (EER): the rate of FMR and FNMR being equal,
thus the EER emphasises neither on secure nor on user-friendly
applications.

• FMR100: FNMR for FMR = 1%,

• FMR1000: FNMR for FMR = 0.1%,

where FMR100 and FMR1000 strongly emphasise on secure applica-
tions. However, either of both ROC and DET curves have also steppy
parts due to a lack of scores. Thus, the statistical significance of error
rates needs to be concerned as well. The rule of 3 [36] addresses the ques-
tion "What is the lowest error rate p that can be statistically established with
a given numberN of independent identically distributed comparisons?" [26].
It is defined for a 95% confidence level on N individuals by p ≈ 3

N .
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Figure 6: Detection error tradeoff diagram example indicating boundaries
by Doddington’s rule of 30 [35]

Further, Doddington et al. [35] suggested a rule of 30 which states that,
to be 90% confident that the true error rate is within ±30% of the observed
error rate, there should be at least 30 errors4 [26]. Fig. 6 also illustrates the
error rate boundaries due to Doddington’s rule of 30 and its impact
on the separation of insignificant error rate regions. In this case, the
FMR1000 metric is not applicable due to rule of 30 boundaries declar-
ing corresponding FNMR measurements at FMR < 0.3% as statistically
insufficient.

2.2.5.2 System level verification error metrics

System level error rates comprise acquisition processes as well [26],
hence the False Accept Rate (FAR) is defined by the FMR rate of ac-
quired impostor samples [26]:

FAR = FMR(1− FTA), (7)

and the False Reject Rate (FRR) is defined by the FNMR of acquired
genuine samples plus not-acquired genuine samples, which where
falsely rejected due to failed acquisitions [26]:

FRR = FTA + FNMR(1− FTA). (8)

4 The rule of 30 was introduced within the speaker recognition community [35] and
included into ISO/IEC 19795-1:2006 [26].
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Furthermore, both metrics can be generalised (GFAR,GFRR) by tak-
ing the FTE into account [26]:

GFAR = FMR(1− FTA)(1− FTE), (9)

GFRR = FTE + (1− FTE)FTA + (1− FTE)(1− FTA)FNMR. (10)

2.3 robust bayesian decisions : entropy of bayes acts

Besides scores as evidence and systems biometric performances, the
evidence strength needs to be reported as well [14, 17]. Furthermore,
by interpreting fig. 1 as a cost-matrix, strong evidence pattern recog-
nisers must be assumed to be useful to make cost-effective decisions in
the face of uncertainty [18, p. 13]. Each Bayes action a, e. g. accept or
reject, is afflicted with entropy [18, 37], because a soft decision score
is transferred into a hard decision. Hence, Bayesian actions need to
be robust in terms of entropy.

Shannon entropy as a measure for uncertainty of a probability dis-
tribution P and its probability mass function p is in general defined
for all random variables of X by

H(P) = −
∑
x∈X

p(x) logp(x) = EP{− logp(X)}. (11)

Evidence strength can be seen as the maximum entropy possible of an
evidence measure system. The generalised maximum entropy H(P∗)

can be defined as the lowest upper bound of each entropy H(P), rep-
resenting all greatest lower bounds of the expected value from all
probability mass functions q defined over X:

H(P∗) = EP∗{− logp∗(X)} = sup
P∈Γ

EP{− logp∗(X)},

= sup
P∈Γ

H(P),

= sup
P∈Γ

inf
q∈ΓX

EP{− logq(X)},

= inf
q∈ΓX

sup
P∈Γ

EP{− logq(X)}, (12)

where Γ is the distribution class of all P, further, q = p∗ holds for
the maximum entropy P = P∗. For robust Bayesian actions, the rep-
resentative distribution P∗ should minimise the worst-case expected
logarithmic score (log loss) in terms of evidence strength [37]. Further,
the Bayes loss should be measured according to Shannon entropy as
well by a logarithmic score, see eq. 11 [37].
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2.3.1 Bayes loss and proper scoring rules

The Bayes loss Hloss(P) ∈ [−∞,∞] can be defined by the greatest
lower bound of all losses from all Bayesian acts AP by a loss function
L(x,a) [37]:

sup
P∈Γ

EP{− logq(X)} = EP{L(X,a)},

Hloss(P) = inf
a∈A

EP{L(X,a)}. (13)

Bayes loss measures the probabilistic prediction accuracy and thus, it
can also be seen as Bayes cost, hence loss functions Lϕ(x,a) are cost
functions of the outcome [18, 37]. Loss-based scoring rules can be
defined in generic terms by random variables of X and robust Bayes
acts aQ or in soft decision terms as predictions P and an expected
outcome under Q (e. g. the true hypothesis) [37], such that

L(x,aQ)⇔ L(P,Q), (14)

where L(P,Q) 6 L(Q,Q) holds in terms of a similarity metric [38].
Thus, Bayesian loss functions are also proper scoring rules in terms
of two-decision problems [18, 38].

Proper scoring rules are defined as special cost functions [18, 38],
which were indirectly motivated by Brier [39] to evaluate the good-
ness of weather forecasts by the observed weather5. On strictly proper
scoring rules L(P,Q) 6 L(Q,Q) holds with equality if, and only if,
P = Q [38]. A (strictly) proper scoring rule for logarithmic scores is
the log loss Llog(p,q) [18, 37, 38]:

Llog(p,q) = − logpq (15)

which is overall Bayesian action just the Shannon entropy, see eq. 13

[37].
Since the use of Log-Likelihood Ratios (LLRs) is common for likeli-

hood ratio computations, especially in terms of speaker recognition
[12, 13, 18], evidence measures will refer to LLRs, thus the logarithmic
scoring function will be referred to as the applied proper scoring rule
for Bayes loss and Bayes cost.

2.3.2 Empirical Bayes risk as Bayes error-rate

The empirical Bayes risk Hrisk in general is based on a Bayes loss
function Lϕ and cost priors Π = {πa|a ∈ A} for each of all Bayesian

5 Popular proper scoring rule examples are shown in appendix C
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actions6 A, thus the empirical logarithmic Bayes risk Hlog-risk as a
special case can be set by ϕ = log, such that:

Hrisk(P,Π|Q) =
∑
a∈A

πa

|A|

|A|∑
i

Lϕ(pa,i,qa,i), (16)

Hlog-risk(P,Π|Q) =
∑
a∈A

πa

|A|

|A|∑
i

Llog(pa,i,qa,i), (17)

where a loss only occurs on wrong decisions, such that the losses of
correctly matched (genuines) and correctly non-matched (impostors)
are zero. Therefore, the Bayes loss is more defined with respect to
genuine and impostor LLRs S and a threshold t rather then to Bayesian
actions [18, p. 96], which result due to the comparison S > t:

Llog(S, t|H0) = log(1+
1

exp(S− t)
), (18)

Llog(S, t|HA) = log(1+ exp(S− t)), (19)

where Llog(S, t|H0):

• vanishes on a good recogniser output, SH0 � t, due to:
1

exp(S−t) ≈ 0,

• results in log(2) on a random recogniser output S ≈ t, and,

• grows linearly and unboundedly for bad recogniser outputs
SH0 � t,

vice versa on Llog(S, t|HA). Fig. 7 illustrates the symmetric relation
between both loss functions, Llog(S, t|H0) and Llog(S, t|HA), which is
threshold-independent.
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Figure 7: Logarithmic loss of LLRs, for t = 0, 1, e

6 WhereA = accept, reject in binary decision terms, while in terms of assigning patterns
to M identities |A| =M.
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Furthermore, the average of each logarithmic loss can be denoted
with respect to verification error functions FNMR and FMR, see [18, p.
75]:

1

NH0

NH0∑
g

Llog(Sg, t|H0) = FNMR(t|S), (20)

1

NHA

NHA∑
i

Llog(Si, t|HA) = FMR(t|S). (21)

Thus, the empirical logarithmic Bayes risk from eq. 17 can be rede-
fined as the (empirical) Bayes error-rate Herr on an evidence measure
or likewise recognition system E [18, p. 55-77]:

Herr(E,πFNM,πFM, t|Q) = πFNMFNMR(t) + πFMFMR(t), (22)

with priors πFNM,πFM for a FNM and FM, respectively. The empirical
Bayes error-rate Herr can be interpreted as both: a strict proper scor-
ing rule and generalised cross-entropy [40].

2.3.3 Forensic prior odds and Bayes thresholds

In terms of application-specific constraints, such as forensic prior
odds p(H0), p(HA), both priors πFNM,πFM can be denoted with re-
spect to a synthetic prior π, which models the genuine π and impos-
tor 1− π probabilities of an application, and error costs CFNM, CFM.
Thus, an application domain can be modelled more precisely and its
Bayesian error-rate is calculated as [40]:

πFNM = π CFNM,

πFM = (1− π)CFM,

Herr(E,π,CFNM,CFM, t|Q) = π CFNM FNMR(t)

+ (1− π)CFM FMR(t). (23)

Hence, application-dependant priors influence the Bayesian error-
rate. However, the Bayes error increases on inappropriate setting of
thresholds t which may cause wrong Bayes acts. Thus, Bayes deci-
sion thresholds η are motivated by the Bayes theorem in eq. 2 and the
prior odds in eq. 3 which substitute t by emphasising more their
Bayesian and entropy based motivation. Assuming well-calibrated
systems with low entropy an optimal Bayes decision threshold can
be constrained on unity of all expected costs if both decisions (Bayes
acts) are equally likely, having a default cost of 1 [18, p. 44]:

η π CFNM = (1− η)(1− π)CFM = 1 | ∃ 0 < η < 1, (24)

log
(

η

1− η

)
= log

(
CFM

CFNM

1− π

π

) ∣∣∣∣ log
(

x

1− x

)
= logit(x),

logit(η) = log
(
CFM

CFNM

)
− logit(π). (25)
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Note that all LLR scores are in logarithmic form, hence η is already
applied in logit form, meanwhile the parameters CFM,CFNM,π are not,
thus eq. 25 is interpreted as the Bayesian LLR threshold:

η = log
(
CFM

CFNM

)
− logit(π). (26)

According to eq. 3 only one prior application parameter π̃ is neces-
sary instead of π,CFNM,CFM. Such an effective prior π̃ can be defined
with respect to eq. 23 by [40]:

π̃ =
π CFNM

π CFNM + (1− π)CFM
, (27)

η = − logit(π̃) = − logit
(
p(H0)

p(HA)

)
, (28)

thus eq. 23 can be rewritten as:

Herr(E, π̃|Q) = π̃FNMR(− logit π̃) + (1− π̃) FMR(− logit π̃). (29)

Where the effective prior models an application’s genuine probability
and it’s additive inverse (1−π)CFM

π CFNM+(1−π)CFM
models an application’s im-

postor probability as well as it results in the application-dependant
Bayes threshold η.

2.3.4 Application-dependant entropy

A systems actual accuracy and Bayes error-rate also depend on the
application-dependant threshold η. However, systems having a bad
Bayes error-rate Herr can be highly accurate due to badly distributed
LLRs in terms of η: e. g. genuine and impostor scores distributed
close to a threshold η might have the same biometric performance
as scores that are in a similar manner widely spread, but scores being
close around a hard-decision threshold will cause more entropy than
widely spread ones.

These score distributions could easily be linearly transformed into
better distributed scores according to the thresholds by preserving
a systems performance. Such linear transformations are referred to
as system calibration [18, 41, 42] which assume a minimum Bayes
error rate Hmin

err at a certain threshold tuncal 6= η and a calibration loss
resulting in additional entropy Hcal

err [18, p. 33-37,61,70] — a total error
rate Htot

err is then defined by the sum of minimum cross-entropy and
the calibration information loss:

Htot
err = Hmin

err +Hcal
err. (30)

An intuitive plotting of calibration loss among several application-
dependant Bayes thresholds can only be done after normalisation of
application-dependant default error rate effects. For a default system
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E0 the default error rate changes by different application priors π̃.
Where E0 emits LLRs of S = 0, Herr(E0, π̃|Q) denotes the error of E0
and a normalised error Hnorm for E can be denoted by [18, p. 76-78]:

Hnorm(E, π̃|Q) =
Herr(E, π̃|Q)

Herr(E0, π̃|Q)
=

Herr(E, π̃,Q)

min(π̃, 1− π̃)
, (31)

which constructs a reference error value of 1 as default entropy by
dividing the weighting effects of π̃ in eq. 29. Thus, error rates of
Hnorm(E, π̃|Q) = 1 denote a total information loss and a full over-
all detection cost, which can be interpreted as e. g. costs of wrong
Bayesian actions, necessary usage of additional development data, the
need of additional subsystems, or an metric to be minimised towards
zero [18, 40, 41, 42]. Further, application-dependant entropy values
can be compared application-independently [18, 40]. A NBER plot is
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Figure 8: Normalised Bayesian Error Rate (NBER) plot example using the
BOSARIS toolkit [40]

shown in fig. 8, where the calibration losses from Emin
err to Etot

err are
presented application-independently and for an example threshold
η = 0.5, with an effective application prior of π̃ = 1

1+
√
e
≈ 0.37754.

Furthermore, rule of 30 boundaries can also be plotted with respect
to their threshold of occurrence.

2.3.5 Goodness of log-likelihood ratios

Application-dependant Bayes error rates are restricted to one effective
prior, providing information about how good systems are calibrated
for one application, but not application-independently: Forensic ex-
perts should give the court an evaluation, which illustrates the performance
of the system, its discrimination value and its robustness to mismatched
recording conditions [16].

The application-independent Bayes error rate of systems can be ob-
tained by integrating out the effective prior, thus a systems cost of LLR
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scores Cllr can be reported as the application-independent goodness
of LLRs [18, 40, 41, 42]:

Cllr(E|Q) = k

∫∞
−∞Herr(E, π̃|Q)∂π̃,

=
1

2NH0

∑
g∈H0

ld(1+
1

eSg
) +

1

2NHA

∑
i∈HA

ld(1+ eSi).

(32)

Cllr can be interpreted as the scalar expression of the area under NBER

curves, as e. g. in fig. 8: Hdefault
norm ,Hmin

norm,Htot
norm where fig. 8 excerpts the

interval of relevant operating points7 η = [−10, 10] that correspond to
similarity probabilities within [≈ 0.00005,≈ 0.99995].
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Figure 9: Score calibration example using Cllr: score distributions and Bayes
error rate

The metric can also be used for linear regression to calibrate scores,
hence scores of unknown verification attempts are expected to cause
less entropy. Fig. 9 illustrates Cllr-based score calibration effects on
the scores from fig. 4 as well as on according NBERs8 [18, 19, 40, 41,
42, 43]: the score distribution is linearly transformed with respect to a
certain threshold and according Bayes loss functions, see fig. 7. Thus,
only NBERs are effected and biometric performance metrics remain
unchanged.

2.4 pattern recognition

The previous sections described how to measure a pattern recognis-
ers performance and entropy, and how pattern recognisers are used
in biometric systems. In speaker recognition literature the most pop-
ular techniques are based on Hidden Markov Models (HMMs) and

7 Though, significant operating points are bounded by the rule of 30, such that more
accurate Cllr computations should emphasise more the according partial-area-under-
curve which can be denoted e. g., by 30 FMs and 30 FNMs. However, for the purpose
of community comparability Cllr computations by the BOSARIS Toolkit [40] are em-
phasised in this thesis.

8 Please note: the presented curves are trained by and applied on the same scores,
hence an unrealistic best case scenario is shown.
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Gaussian Mixture Models (GMMs) to estimate likelihoods for either of
both hypotheses H0, HA [12, 13]. HMMs were motivated by previous
related work on automatic speech recognition to model acoustic features
with respect to class units of speech sounds (phones) [8, 9]. About the
year 2000 GMMs were introduced to speaker recognition for clustering
the whole acoustical feature space of spoken languages [44].

Furthermore, biometric pattern recognition need to deal with bet-
ween- and within-individual variances and thus, with appropriate
normalisation approaches [12, 13]. Most recent speaker recognition
approaches are applying whitening transformation and Fisher’s lin-
ear discriminant analysis [13, 45, 46].

2.4.1 Hidden Markov Models

A HMM is a two-staged statistical process for discrete-time data, that
is based upon a Markov chain, the transition from one state to another
[8, 9]. Each possible transition is afflicted with an a-priori transition
probability, if there is no transition between two specific states, the
transition probability is zero. HMM states can be non-emitting and
emitting, so they emit any observable data by a-priori statistical mod-
elling, e. g. by Gaussian distributions.

Thus, for certain data observations one state is more likely to emit
the observed data than another, hence all possible Markov chains of
a HMM can be assigned with an a-posteriori probability according to
a certain data sequence by their transition and emission probabilities.
The selection of the most likely Markov chain is considered as the
second stage of a HMM. Thereby, the actual Markov chain remains
hidden and only the HMM score is returned [8, 9, 47].

S E1 E2 E3 E1 pb pd 1-pe

pa pc pe

Emission of observed data

e2

Data modelling by Gaussian mixtures

e1 e3

Figure 10: Hidden Markov Model (HMM) example
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Fig. 10 shows a HMM example9 with three emitting states, which
are modelling data by five Gaussian mixtures with transition proba-
bilities pa–e, emitting states E1–3, emission probabilities e1–3, and non-
emitting start and end states S,E. By probabilistic aligning data to
HMM states, the amount of possible Markov chains grows quadrati-
cally with respect to the amount of states and linearly with respect
to the amount of observed data (time series) [8, 9, 47]. Such an align-
ment can be performed by the Viterbi decoding [8, 9, 47], which is
exemplary shown in fig. 11 on a very general speech data presenta-
tion: discrete-time data is segmented into sequence frames of same
duration, and emitting states are aligned to each frame. For the first
frame only one state is possible to align due to the HMM design in
fig. 10 and thereafter each transitionable state can be aligned.

E1 pa E1

E2 E2

E

E3

E E

S

1

1-pe 1-pe 1-pe

pc

pb

pd

General Viterbi scoring

Score0 = 1

Scorei+1 *= pI * ei

1 pa*e1 pb*e2 pc*e2 pd*e3

Score3' * pe < Score2' * pd

E1 E1 E2 E2 E3

E2

E1

E3 E3

pa

pc

pe pe

pb pb

pd pd

...

...

...

Score2' * pc >= Score1' * pb

Score2' * pc < Score1' * pb

1 Predecessor

Selection of most likely 

Markov chain

Viterbi path backtracking

Figure 11: Viterbi algorithm example with path backtracking, where pa-e de-
note transition probabilities and e1-3 denote emission probabili-
ties from the HMM in fig. 10

A Viterbi scoring is performed in the same manner as a Markov
chain likelihood is computed by multiplying up all transition and
emission probabilities within the chain. On forward computation all
chain likelihoods are computed and the most likely Markov chain
is selected, meanwhile transition and emission probabilities can be
stored as well. Thereby, each emitting state emits data according to
its modelling and thus, some frames are more likely to be emitted by
one state than by other states, and hence state transition decisions are
dynamically influenced by the emission probabilities [8, 9, 47]. The
hidden Markov chain or Viterbi path can be obtained by backtracking

9 The example HMM represents a left-to-right continuous density HMM, which is com-
monly used for speech processing.
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all state transition decisions as shown in fig. 11 with bold most-likely
Markov chain or Viterbi path10 [8, 9, 47].

2.4.2 Gaussian Mixture Models

A Gaussian Mixture Model (GMM) can be interpreted as a HMM with
one emitting state [44, 47, 48], thus no alignment is needed. A GMM

models data frames by joint Gaussian distributions, with C compo-
nents as Gaussian distributions, corresponding component weights
wc, component means ~µc, and component covariances Σc [44, 47, 48].
Hence, GMMs are generative models able to emit any data with respect
to the GMMs dimensionality and to score how likely given data will
be emitted by a GMM. Likelihood scores S for feature vectors ~ψ are
computed component-wise by Gaussian distributions [44, 47, 48]:

Nc(~ψ|λ) =
1√

(2π)D |Σc|
e−

1
2 (

~ψ−~µc)
TΣ−1

c (~ψ−~µc), (33)

with D as the feature vectors and multivariate Gaussian distributions
dimension. The component likelihoods Nc(~ψ) are summed up with
respect to their component weights resulting into a GMMs λ score S
[44, 47, 48]:

S(~ψ|λ) =
∑
c∈C

wcNc(~ψ|λ), (34)

with
∑
c∈C

wc = 1.

A GMM model can be denoted as λGMM = {~µ,Σ, ~w}, with a super-
vector ~µ of concatenated component means, an overall-components
covariance matrix Σ, and a vector of each components weight ~w.

Initial GMM parameters can be estimated after a cluster analysis,
e. g. k-means or tree clustering [47], of a given feature space with respect
to a maximum likelihood of the GMM score S to all features: weights
are set with respect to component occupancy probabilities, means
and covariances are computed component-wise by statistics of the
features occupying each component [47].

2.4.2.1 Baum-Welch statistics

Baum-Welch statistics [49] are describing GMM (directional) moments
with respect to certain feature vectors based upon its components
posterior probabilities Pc(~ψ) = wcNc(~ψ|λc) [23, 49, 50, 51]:

10 Computational optimisation approaches can also be motivated by fig. 11 by e. g. us-
ing pruning methods, such as making the state transition decision during forward-
ing after n = 1, 2, . . . ,n frames and omitting further likelihood computations since
the overall Viterbi score will become unlikely.
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• zero order statistics ~Nc(~ψ) = Pc(~ψ) are representing the a pos-
terior probabilities of a feature vector ~ψ (feature-based weight
directions),

• first order statistics Fc(~ψ) = Pc(~ψ)~ψ = ~Nc(~ψ)~ψ are weighting
zero order statistics by the observed data (feature-based mean
directions), and,

• second order statistics Sc(~ψ) = Pc(~ψ)~ψ~ψ ′ = Fc(~ψ)~ψ ′ represent
a covariance matrix of the feature vectors weighted by posterior
probabilities (feature-based covariance directions).

Furthermore, first and second order Baum-Welch statistics can be cen-
tred by GMM means [23, 52]:

Fc,centered(~ψ) = Pc(~ψ)(~ψ− ~µc), (35)

Sc,centered(~ψ) = Pc(~ψ)(~ψ− ~µc)(~ψ− ~µc)
′ (36)

= Fc,centered(~ψ)(~ψ− ~µc)
′.

2.4.3 Expectation-maximisation algorithm

For training an initial parameter set towards an optimal training data
likelihood weight, mean, and variance values can be iteratively up-
dated by an expectation-maximisation algorithm. The GMM param-
eter likelihoods rely on its Baum-Welch statistics, thus weights are
re-estimated by the average prior zero order statistics, means by the
ratio of prior first order to zero order statistics, and variances by the
ratio of prior second order to zero order statistics centred by the up-
dated mean variance:

ŵc =
~Nc(~ψ)

T
, (37)

with T averaging ~Nc w.r.t. the amount of feature vectors,

~̂µc =
~Fc(~ψ)

~Nc(~ψ)
, (38)

Σ̂c =
Sc(~ψ)
~Nc(~ψ)

− ~̂µc~̂µc
′
. (39)

2.4.4 Maximum a posteriori adaptation

In order to adapt GMMs towards the (acoustical) feature space of
biometric characteristics, Maximum a Posteriori Adaptations (MAPs)
can be performed by using Baum-Welch statistical information to up-
date each of the GMM parameters: means, covariances, and, weights.
Thereby, new parameters ŵc, ~̂µc, Σ̂c are set with respect to their prior
values weighted by a population priors τw, τµ, τΣ and the observed
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directional moments as Baum-Welch statistics weighted by the zero
order statistic ~Nc(~ψ) [44, 47, 48]:

ŵc = γ
τwwc,prior + ~Nc(~ψ)

~Nc(~ψ)
T

τ + ~Nc(~ψ)
, (40)

with γ s.t.
∑
c∈C

ŵc = 1, and,

~̂µc =
τµ~µc,prior + Fc(~ψ)

τµ + ~Nc(~ψ)
, (41)

Σ̂c =
τΣ(Σc,prior + ~µc,prior~µ

′
c,prior) + Sc(~ψ)

τΣ + ~Nc(~ψ)
− ~̂µc~̂µc

′
. (42)

Hence, a GMM’s log-likelihood is maximised with respect to the
observed data ~ψ in terms of Bayesian probability theory. Fig. 12 illus-
trates MAP effects on two-dimensional generic data after 5, 10, and,
20 iterations for a 2-component GMM: the initial GMM is trained ac-
cording to initial data (blue) and is then iteratively adapted to the
new data (green). MAP terminates if there are no significant likelihood
changes to the prior parameter configuration or n = 20 iterations are
completed [47].
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Figure 12: MAP adaptation example with i = 0, 5, 10, 20 iterations
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2.4.5 Comparison criteria between Gaussian Mixture Models

GMMs can be compared using distance and statistical information cri-
teria in quality measurement terms which can be feature data depen-
dent or independent.

As the feature-dependant log-likelihood is used for MAP adapta-
tion, a loss-function can be defined by the negative log-likelihood [53],
which can be interpreted as a joint probability distribution function
and the joint entropy of a GMM [48, 53]:

HGMM(λ|Ψ ) = −
1

|Ψ |
logS(λ|Ψ ), (43)

which can also be seen as the minimum description length of a GMM

[54]. However, a model’s minimum description length should also
conduct the model’s complexity [54], hence the Bayesian Information
Criterion (BIC)11 is motivated, which estimates a GMM’s model quality
with respect to its entropy and its number of components |C| [54, 55]:

BIC(λ|Ψ ) = −2 log (S(Ψ |λ)) + |C| log |Ψ |, (44)

hence the BIC can be used to compare two GMMs by their model qual-
ity, independent of their kind.

GMM distance metrics commonly rely on the Kullback-Leibler diver-
gence (KL), which is initially defined as the relative entropy between
two Gaussian distributions S(Ψ |λA),S(Ψ |λB) over features Ψ [56, 57]:

KL(λA||λB) =
∫
S(Ψ |λA) log

S(Ψ |λA)

S(Ψ |λB)
dΨ , (45)

=
∑
c∈C

wc,A

[
log

wc,A

wc,B
+
1

2

(
log

|Σc,B|

|Σc,A|

+ det(Σ−1
c,BΣc,A) −D

+ (~µc,A − ~µc,B)
′Σ−1
c,A(~µc,A − ~µc,B)

)]
. (46)

However, the KL is asymmetric. A symmetric KL variant can be con-
structed by adding KL(λB||λA). Longworth [57, p.52f.] refers to a sym-
metric KL distance metric based upon the matched-pair upper bound,
assuming both GMMs are equally shaped with respect to their compo-
nents and share weights and variances:

KL2~wA=~wB,ΣA=ΣB
(λA||λB) =

∑
c∈C

wc~µ
′
c,AΣ

−1
c ~µc,B, (47)

hence GMMs can also be compared feature-independently12.

11 The BIC or Schwarz criterion is related to the Akaike Information Criterion (AIC):
2 log (S(Ψ |λ)) + 2|C| [55].

12 Please note: if component-only comparisons are relevant, the Mahalanobis distance
(~µc,A − ~µc,B)

′Σ−1
c,A(~µc,A − ~µc,B) might be useful as well [57, 58].
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2.4.6 Eigen-analysis

Eigen-analysis determines non-zero, characteristic vectors, eigen-vec-
tors ~v, among a data set matrix A. Thus, the matrix A stretches the
eigen-vector ~v by an amount specified by a scalar value, its (characteristic)
eigen-value λ [59]:

A~v = λ~v. (48)

By solving the linear equation (A − λI)~v = 0, where I denotes the
identity matrix, linearly independent eigen-vectors may be obtained,
such that λ−1 exists, thus data sets can be represented by an uncorre-
lated linear system:

A = ~vλ~v−1, (49)

which is known as eigen-value decomposition.

2.4.7 Whitening

Whitening is a technique to transform data into more easily usable
shapes, which e. g. may allow matched-pair alike data treatments: cor-
related, differently spaced, and non-unit variant data is transformed
into uncorrelated data having zero means and an unit variance of 1
[53].

After means are subtracted from a development data set, its covari-
ance matrix Σ eigen-values ~λ and eigen-vectors v are decomposed,
hence the variance of the data can be decorrelated and a diagonalised
covariance matrix can be written as:

~λ = v ′Σv. (50)

The data will be whitened by making the uncorrelated variance ~λ uni-
form [60]:

I = ~λ−
1
2~λ~λ−

1
2 , (51)

where eq. 50 can be substituted:

I = ~λ−
1
2v ′Σv~λ−

1
2 . (52)

A whitening transformation matrix W can be created by:

W = ~λ−
1
2v ′. (53)

Thus, a data set A can be whitened by AW. Please note: W has the
same shape as the original covariance matrix, is semi-positive definite,
and symmetric.
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2.4.8 Fisher’s linear discriminant analysis

Fisher’s Linear Discriminant Analysis (LDA) is applied to perform
dimension reduction by preserving discriminant information and re-
ducing between-variabilities [7]. In contrast to Principal Component
Analysis (PCA), LDA assumes the discriminant information to be more
within the data mean ~µ values rather than in its variance [61].

In order to determine discriminant elements x ∈ X for a class c ∈
C, between and within scatter matrices SB,SW are computed with
respect to distances between class means µc and the overall element
means x̄ or the class elements xi, respectively:

SB =
∑
c∈C

(µc − x̄)(µc − x̄)
′, (54)

SW =
∑
c∈C

∑
i∈c

(xi − µc)(xi − µc)
′. (55)

By setting between scatters as more important as within scatters, an
objective function rating the discrimination accuracy can be denoted
for input vectors ~ϕ as [61]:

J(~ϕ) =
~ϕ ′SB~ϕ

~ϕ ′SW ~ϕ
, (56)

which needs to be maximised for biometric systems. However, by de-
noting the denominator as ~ϕ ′SW ~ϕ = 1, a corresponding Lagrangian
optimisation problem Lϕ can be defined [61]:

min
w

− ~ϕ ′SB~ϕ s.t. ~ϕ ′SW ~ϕ = 1, (57)

Lϕ = −~ϕ ′SB~ϕ+~λ(~ϕ ′SW ~ϕ− 1). (58)

Thus, the following conditions need to hold13[61]:

SB~ϕ = ~λSW ~ϕ,

⇒S−1W SB~ϕ = ~λ~ϕ,

⇒S
1
2

BS
−1
W S

1
2

BS
1
2

B~ϕ = ~λS
1
2

B~ϕ,

⇒S
1
2

BS
−1
W S

1
2

Bv = ~λv, (59)

where S
1
2

B~ϕ = v is substituted.
By decomposing the eigen-problem from eq. 59 a solution ~λϕ, vϕ

can be found, where on multi-dimensional solutions the most dis-
criminant elements are ranked accordingly to the descend order of~λϕ
values. A convenient LDA mapping matrix M can be created by merg-
ing the solution eigen-vectors ~vϕ with respect to the corresponding
λϕ order and the reduction dimension D [62]:

M = vϕ(indexes~λ(~λϕ,desc(1, . . . ,D))). (60)

13 According to the first order solution (Karush-Kuhn-Tucker) conditions satisfying Lϕ.
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2.5 summary

This chapter comprised forensic evidence, the design of biometric
systems, biometric performance and Bayesian entropy evaluations,
application-dependant Bayesian thresholds, Hidden Markov Models
(HMMs), Gaussian Mixture Models (GMMs), the Bayesian Information
Criterion (BIC), whitening transformation, and Fisher’s LDA.

Biometric and entropy performance evaluations rely on falsely mat-
ched genuine and imposter attempts. Tab. 2 compares the evaluation
metrics on their evaluation scope (score performance, decision en-
tropy, entropy cost of LLR scores), if they can be reported by scalar
values or DET/NBER plots, and if they are sensitive towards score cal-
ibrations. Furthermore, metric values of the used score example are
presented as well.

Table 2: Evaluation metrics overview, according to Brümmer [18, p. 88]

Metric Scope of
Evaluation

Scalar
value

Report
kind

Calibration-
sensitive

Example
η = 0.5

AUC score yes scalar no 0.9977

EER score yes DET no 0.0208

FMR100 score yes DET no 0.0539

FMR1000 score yes DET no 0.3447

Htot
norm decision no NBER yes 0.0807

Hcal
norm decision no NBER yes 0.0545

Hmin
norm score no NBER no 0.0545

Ctot
llr LLR yes scalar yes 0.2129

Ccal
llr LLR yes scalar yes 0.0818

Cmin
llr score yes scalar no 0.0789

Biometric metrics (AUC, EER, FMR100, FMR1000) are evaluating
score performances, where AUC seems to provide less system com-
parison information than e. g. FMR100 or FMR1000, which represent
the user-friendliness on highly-secure performances rather than com-
paring an overall probability if its more likely to reject a genuine or
accept an impostor. The EER delivers an upper-bound for either low
FMRs or low FNMRs.

Entropy-based metrics indicate whether systems need more addi-
tional information for making forensic-reliable decisions. Since foren-
sic evidence is influenced by additional prior knowledge, such as
e. g. a genuine attempt probability, effective priors π̃ and according
Bayesian thresholds η are effecting the application-dependant metrics:
Htot

norm,Hcal
norm,Hmin

norm. Where differences between Htot
norm and Hmin

norm
indicate badly calibrated scores, hence score calibration techniques
might be applied to biometric systems to reduce their decision en-
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tropy resulting in Hcal
norm, an optimisation of Htotnorm. Thus, the rela-

tive gain from Hcal
norm to Hmin

norm can provide an insight to how much
a systems entropy can be reduced to a minimum entropy given by
proper scoring rules based on a weighted sum14 of the algorithmic
error rates FMR and FNMR.

Calibrations may rely on proper scoring rules such as Cllr, which
is an application-independent entropy metric evaluating the good-
ness of LLR scores. According to each of the application-dependant
metrics Htotnorm,Hcalnorm,Hmin

norm application-independent metrics can
be derived: Ctot

llr ,Ccal
llr ,Cmin

llr . However, LLR decision-based metrics are
calibration-sensitive: they can be optimised or weakened, depending
on the data shift between development and evaluation data, but if the
relative gain between Ccal

llr and Cmin
llr is low, calibration can be denoted

to be adequate. Cllr values can be reported either as scalar values or
as the area under Hnorm curves, hence all Bayesian error-rates can
be reported by NBER plots, but for comparability reasons Cllr will
be reported by scalar values. This thesis will refer to results on EER,
FMR100, Hmin

norm, and Ctot
llr using DET and NBER plots.

14 Please note: this weighted sum has application-dependant weights.
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S P E A K E R V E R I F I C AT I O N

This chapter provides an overview on current speaker verification
methodologies. Speaker verification applies pattern matching algo-
rithms on voice-based characteristics [13]. Characteristic information
about the voice of a subject can be obtained by extracting speech sig-
nal features. Thereby, the acoustical features depend on the speaker
and the spoken text. Acoustical features can be clustered by e. g. the
smallest speech units delivering information, the phones [12].

Different speakers have different subspaces within an universal
acoustical feature space [7, 12, 23]. The subspace offset from the uni-
versal cluster describes the direction vector of a sample which de-
pends on the verbalised text of a speaker. In order to obtain relevant
speaker-only features, these vectors are analysed towards character-
istic factors [7, 23]. The factor-analysed features are referred to as
identity-vectors (i-vectors) [7].

In biometric terms i-vectors are features and in machine learning
terms they are patterns. Either way, an i-vector comparison can be sim-
ply performed by measuring the angle between reference and probe
i-vectors [7]. More advanced comparators also take speaker variabili-
ties into account [24, 63], e. g. due to changes in environmental noise
and recording locations, different microphones as capturing devices
(between-speaker variabilities), varying microphone distances, emo-
tional and physical states, or ageing (within-speaker variabilities).

Further, system scores are normalised to augment the recognition
results with a-priori knowledge of similar verification attempts [24,
64]. Verification systems are calibrated in order to reduce recognition
entropy, and several verification systems can be fused into one recog-
nition system accumulating all advantages of each of the subsystem
recognition accuracies [18, 40].

This chapter is organised as follows: in sections 3.1 and 3.2 speech
processing and a clustering of the acoustical space are introduced,
then previous speaker modelling approaches are explained in sec-
tion 3.3 in an abstract way. Sections 3.3 and 3.4 present factor analy-
sis methods on speech patterns, the extraction of i-vectors, and i-vector

scoring approaches. Further, section 3.4 explains score normalisation,
calibration, and fusion techniques.

3.1 speech processing

Human speech is produced by articulatory motions controlled by the
motor cortex [65]. These articulatory motions start with pressing air

32
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out of the lungs, which passes the glottis where a speaker’s voice
main characteristic traits are shaped by the vocal folds1 [66]. Speakers
control whether the air moves through the nasal or oral cavity or both
by their velum [66]. The nasal cavity’s shape influences the shape of
nasal phones, while air passing the oral cavity is influenced by the
oral cavity’s shape, tongue motions, jaw shapes, and the lip’s shape
and motions [66]. Fig. 13 illustrates the vocal anatomy and the motion
control on speech production which, in terms of biometrics, form
physiological and behavioural characteristics.

(a) Anatomy of the articulation system, see [67]

(b) Speech production and motor control, see [65]

Figure 13: Articulation anatomy and speech production

1 Vowels are produced with open vocal tract, consonants with complete or partial
closure of it [66].
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The production of speech results in shaped air pressure which is
due to human perception assigned with language-dependant mean-
ings [65]. By recognising varying air pressure, humans are able to
communicate, and distinguish between speakers [14]. Changes in air
pressure are used for pattern recognition as well as in automatic sys-
tems for speech and speaker recognition [8, 9].

Microphones measure changes in air pressure and the changing
velocity by e. g., electricity changes in terms of capacitor voltage as
pressure affects the distance between two plates, or carbon granules
resistance as higher pressure affects a membrane pushing granules
together, such that electric resistance is lowered [68]. Either of both,
capacitor and carbon microphones, are well-known to hand-held and
cordless telephone industry [68]. Fig. 14 shows recorded membrane
changes as raw values over time of a 2012 NIST SRE [69] enrolment
sample.
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Figure 14: Sample with raw valued speech in waveform

Raw valued speech signals contain every sound that was recorded.
Segments containing speech are more important to speaker recog-
nition rather than segments without speech nor with noise [12, 13].
Hence, voice activity needs to be detected.

3.1.1 Voice activity detection

Voice Activity Detection (VAD) removes sample segments that are
likely not to contain speech. These segments are considered to be
those with non-low changes in pressure or likewise the signals en-
ergy [12, 13]. This section explains briefly how the VAD algorithms
work. The signal energy E of all raw samples ωraw is computed by

E(ωraw) = 〈ωraw(t),ωraw(t)〉 =
∫∞
−∞ |ωraw(t)|

2dt, (61)

where t represents the time [47]. The segment length can be defined
by a (short) duration in milliseconds or likewise by an amount ofNseg
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raw sample values: the duration of phones can vary from 30 ms to
200 ms [70] and the speech is recorded by a specific sampling rate [47],
hence the Nseg should be set with respect to the minimum phone as-
piration duration and the Nyquist-Shannon sampling theorem2 in or-
der to not exclude speaker information. Further, two energy-adaptive
thresholds3 are set denoting confident the presence of speech tspeech,
and the presence of speech pauses with environmental noise tnoise

[12, 71].
However, VAD needs to be robust against temporal signal impulses

and tolerant towards phones having low signal energy. Thus, in order
to label the signal as speech and non-speech each threshold needs to
be satisfied by a minimum amount of segments: Nspeech segments
having E > tspeech and Nnon-speech segments having E 6 tnoise [12, 71].
Fig. 15 illustrates VAD processing on the speech sample from fig. 14.

ThresholdsDetected speech

Figure 15: VAD applying segment-wise two adaptive thresholds on signal
energy, see Hegenbart [5]

The resulting VAD filtered sample comprises speech data, and has
a reduced duration which in computational terms of e. g. phone calls
can averagely downsize 40–60% of the sample values, since two sides
share the whole sample duration [5]. Hence, further feature extrac-
tions process less data with more relevant speaker information.

3.1.2 Speech signal features

Speech signal features in speaker recognition are influenced by be-
havioural and physiological characteristics. Fig. 16 compares feature-
domains according to the summary of Kinnunen and Li [12] on ad-

2 The Nyquist-Shannon theorem is a fundamental theorem in information theory. The
maximum bandlimit of a countable sequence of samples is not greater than half the
sampling rate. In given terms: Nseg 6 30

2 ms = 15ms.
3 The thresholds are adaptive in order to deal with quiet and loud speech and they are

adaptively set rather with respect to the overall sample value than to local energy
values, because environmental noise might be non-linear and suddenly impulses
due to in-/decreasing energy values, e. g. due to coughing, need to be considered as
well.
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vantages and disadvantages of different speech characteristics from
high-level spoken language features to short-term spectral features.

Short-term spectral features comprise more physiological charac-
teristics of phone articulations which have strong related motions
between speakers, otherwise spoken language would not work. How-
ever, articulated sounds vary in different physiological traits such that
individual speakers can be distinguished [12]. By analysing mid- and
long-term speech signals, prosodic features can be obtained such as
the glottal pulse4, (phone/word) durations, and rhythm, thus more
behavioural traits which still strongly depend on the physiology, e. g.
shapes of the glottis muscles. In contrast, high-level features describe
behavioural traits that were learned within social and language back-
grounds, such as the idiolect, semantics, accent, dialect, and pronun-
ciation [12].

Figure 16: Speech signal feature overview: from high-level behavioural to
short-term spectral (physiological) features according to Kin-
nunen and Li [12]

High-level features are not influenced by noise and channel effects,
though they are conceded to require a lot of training data, are diffi-
cult to extract under high-computational costs. Since they are based
inter alia on idiolect and semantics, they are language-dependant [12].
However, short-term spectral features can be extracted in real-time
and are text- and language-independent, since they are emphasising

4 The glottal pulse is related to the pitch and the fundamental frequency. In pho-
netic terms the averaged glottal pulse is usually referred to, since it depends on the
characteristics of verbalised phones which are strongly influenced by a humans con-
stitutional state such as exhausted, thrilled, and pleased which humans recognise by
the same characteristic, the changes in the fundamental frequency of another person
[12].
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more on phone articulation parts rather than on a complete phone.
Though, these features measure signal noise and channel effects as
well. Prosodic features have advantages and disadvantages of both,
e. g. the rhythm describes behavioural traits, but is affected by signal
noise as well, hence raw features can be extracted fast, but need more
post-processing that may include human post-editing [12].

According to Rose [72] ideal features in forensic speaker recogni-
tion comprise:

• large between-speaker, small within-speaker variability (distinc-
tiveness),

• robustness against signal noise and channel effects,

• frequent occurrences in natural speech (universality),

• easy measurable (collectability),

• difficult impersonation (low circumvention),

• invariances, e. g. health and ageing (permanence).

They are very related to the quality classification of biometric charac-
teristics by Jain et al. [1], see section 2.2.1 and appendix B. Since short-
term spectral features are referred to as being easy computable from
small data amounts and emphasising on physiological characteristics
rather than learnable high-level features [12]. For the purpose of re-
searching secure systems, low circumvention verification systems are
aimed, thus features describing the speech signal spectrum are em-
phasised on in this thesis.

3.1.2.1 Spectral features

Spectral features are analysed in short-term segments [12, 47]. Hence,
waveforms are given for each segment. The waveforms have huge
variations depending on different phones as well as on physiological-
caused between-speaker variations. In order to extract spectral fea-
tures easily, their frequency spectrum is analysed with respect to dis-
criminative frequency bandwidths [12, 13]: humans having more low-
frequent changes in the speech signal than high-frequent changes are
articulating with less changes in air pressure, and hence with less vo-
cal effort. E. g. women have higher voices than men [13]: the female
vocal folds are shorter than the male vocal folds, in order to circulate
the same amount of air, they need higher-frequent vocal fold mo-
tions, and thus the fundamental frequency of women is higher than
the fundamental frequency of men [66]. Further, different speakers
can be distinguished by comparing patterns of the whole frequency
band: due to the physiological shape of speakers articulation systems
and behavioural articulation motions, changes in speech signals like



3.1 speech processing 38

(air) pressure occur with different frequencies on different humans
[12, 13].

After transforming time-based segments into frequency domain,
frequencies are commonly processed in an auditory-based manner
which is motivated by the human ability to distinguish voices by
speech perception which begins at the signal transformation of the
human ear5 [12, 13, 73]. In order to obtain features describing a short-
term speech segment, the frequency domain features need to be trans-
formed back into the time domain, hence spectral features are ob-
tained by a so called cepstral6 analysis. Here the spectral features
will be further denoted as cepstral features [12, 13]. Fig. 17 gives an
overview on cepstral feature extraction through a block scheme: af-
ter frequency domain analysis, an auditory-based processing is per-
formed, such that cepstral coefficients can be obtained by cepstral
analysis [73].

Frequency 

domain analysis

Auditory-based 

processing

Cepstral 

analysis

Figure 17: Processing flow for extracting cepstral features, see [73]

3.1.2.2 Frequency domain analysis

The transformation of time domain issues into the frequency do-
main is generally performed by the Fourier transform [9, 12, 47]. The
Fourier transform decomposes time domain waveforms into overlap-
ping frequencies which can be represented by sine and cosine func-
tions. Thereby, the spectral density of the sine and cosine functions
will be obtained. In order to determine the energy spectral density7 of
a frequency ξwithin a given continuous-time waveform function f(t),
each waveform sample is normalised by the expected amplitude of ξ
at a certain time t. The energy spectral density is then determined
by integrating the normalised waveforms over time, further sine and
cosine dependencies can be substituted using Euler’s formula8:

f̂(ξ) =

∫∞
−∞

f(t)

cos(2πξ t) + i sin(2πξ t)
dt =

∫∞
−∞ f(t)e−2πiξtdt (62)

where i denotes the imaginary unit. However, since speech signals are
in a discrete-time domain having T samples, eq. 62 can be redefined
as the discrete Fourier transform

f̂(ξ) =

T−1∑
t=0

f(t)e−2πiξ
t
T . (63)

5 Other features such as perceptual linear prediction coefficients [12] rely more on
articulation-based processing.

6 Cepstral is an anagram of spectral illustrating the frequency domain transform and
the backwards transform.

7 The energy spectral density is also known as the power spectrum.
8 Euler’s formula: eix = cos(x) + i sin(x).
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Thus, short-term speech samples can be transformed into frequency
domain obtaining information describing the frequency impact on
the observed waveform, the energy spectral density [9, 12, 13]. Fig. 18

shows the Fourier transformed sample of the raw sample of fig. 14.
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Figure 18: Energy spectral density of the short-term analysed speech sample

3.1.2.3 Auditory-based filter-banks

The spectral density measures the signal as it is, but not as it is
recognised by the human ear [9, 47]. During the last century psycho-
acoustical studies were performed regarding to the human perception
of sound [73]. The perception studies placed emphasis on the frequen-
cies of equal pitch increments resulting in logarithmic dependencies:
the melody-scale (mel-scale) which is based on pitch comparisons is
defined by [9, 47]:

m(ξ) = 1127 log
(
1+

ξ

700

)
. (64)

By rescaling the frequency ranges, the energy information becomes
more discriminative within certain regions. These regions are com-
monly (in the speaker recognition community) processed by using
20–24 triangular band-pass filters9 which are equally spaced accord-
ing to the mel-scale [73], hence they are in a logarithmic manner in
the frequency domain as shown in fig. 19a. The filtered energy in
each mel-scaled band represents the acoustical human perception of
the short-term signal, usually the logarithmic filterbank amplitudes
mj∈Nbanks are used [9, 12, 13, 47, 73].

9 Further perception research on critical band rates showed that there are 24 critical
bands of hearing [47, 66] which are related to the mel-scale, hence using up to 24

band-pass filters continues the auditory approach.
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m1

(a) Mel-scale-based trian-
gular band-pass filter

(b) Feature extraction by sliding segment
windows

Figure 19: Extracting MFCC features according to [47]

3.1.2.4 Cepstral coefficients analysis

In order to obtain cepstral features, the calculated filterbank ampli-
tudes are transformed into the time domain, an inverse discrete cosine
transform is performed which is a special case of the inverse of the
discrete Fourier transformation from eq. 63, thus only real numbers
are kept. Cepstral features c are computed by [9, 47]:

ck =

√
2

Nbanks

Nfilter-banks∑
j=1

mj cos
(
πk (j− 0.5)
Nbanks

)
, (65)

where k denotes the k-th cepstral feature that should be obtained to
describe the short-term speech signal in terms of MFCCs, and j iterates
over the triangular band-pass filter-banks illustrated in fig. 19a. The
speaker recognition community usually refers to extract between 12

and 19 MFCCs which are also supposed to be statistical independent
[9, 12, 74, 75, 76]. For preserving as much speech information as possi-
ble, cepstral features are computed from overlapping sliding segment
windows [47], as shown in fig. 19b.

Further, the MFCCs can be augmented using the logarithmic energy
of the short-term segment [12, 47], see eq. 61, and by appending over-
time information as MFCC delta (velocity) ∆, delta-delta (acceleration)
∆∆, and third differential (jerk) ∆∆∆ coefficients which are computed
by regression [47]:

∆ct =

∑Θ
θ=1 θ(ct+θ − ct−θ)

2
∑Θ
θ=1 θ

2
, (66)
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Figure 20: Cepstral features of a sample

where Θ denotes the ∆-window size. In order to reduce over-time
effects of continuous non-speech noise, the static non-∆ MFCCs can be
zero-normalised, so that linear signal effects vanish [13, 47]. Fig. 20

shows 39 extracted short-term features for the example sample as
12 MFCCs augmented with the signal energy comprising ∆ and ∆∆

features.

3.1.3 Feature normalisation

Features need to be normalised in order to reduce between-sample
or likewise within-speaker variances. An appropriate normalisation
for MFCC features was introduced by Pelecanos and Sridharan [77]:
MFCC values extracted from mid-term speech samples are Gaussian
distributed, hence between-sample mismatch effects can be reduced
by warping them into a target distribution according to their equal
source probability. Fig. 21 illustrates the feature warping idea.

Figure 21: Feature warping according to [77]
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Feature warping is commonly applied on 3-seconds sliding win-
dows10 [75, 77, 78]. Within each feature sequence only one feature
value, the window-center feature, is warped with respect to the fea-
tures around it. Therefore, the feature’s rank R within the window
size Nfeatures is mapped according to the equal-probability of a stan-
dard Gaussian as the target distribution where the warped feature
value w is the accordingly expected value [77]:

1
2 +Nfeatures − R

Nfeatures
=

∫w
z=− inf

N(z)∂z. (67)

Thus, a mapping can be initially created which relates Nfeatures feature
ranks to Nfeatures warped values.

An example of feature warping is shown in fig. 22: the first 3 sec-
onds of the example samples first and second MFCCs are shown which
are warped independently, the according histograms, and the warped
features with their according histogram. The unwarped features oc-
cur as Gaussian with noise, which is reduced by feature warping [77].
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Figure 22: Feature warping on the example sample: normalised feature
value intervals (standard Gaussian)

10 On 10-20ms feature extraction windows this would accord to 150–300 samples.
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3.2 cepstral space analysis

MFCC features represent the acoustical or likewise the cepstral space
of speech samples which comprise not only speech signals. Hence,
the cepstral space is shaped by: environmental and channel noise,
and the speech which depends on the phones of the verbalised text,
and the speaker’s voice, see fig. 23. Where non-speech noise can occur
due to linear and non-linear effects.
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Figure 23: General speech signal influences

Assuming an existing cepstral space cluster, each speech sample
is situated in a subspace depending on channel effects, the phonetic
content, and articulation characteristics of a speaker [7, 12, 23]. In the
following speaker verification will be explained which is based on a
speaker-independent acoustical space clustering, such that speaker-
dependant offsets can be determined and used for template-probe
comparisons.

3.2.1 Clustering acoustical features

As explained in section 3.1 MFCC features are Gaussian distributed
and are not significantly correlated. Hence, GMMs are appropriate for
clustering 39–60 dimensional or likewise multivariate feature vectors
representing 12 MFCCs, the signal energy with their ∆ and ∆∆ val-
ues. If a GMM is trained by speech data of many speakers having
varying texts (phonetic contents), different languages, various dura-
tions, different environmental, and channel effects, then the cepstral
background is universally modelled for all speakers, thus such GMMs

are referred to as Universal Background Models (UBMs) [12]. Further,
these UBMs have diagonal covariance matrices, since MFCC features
of one feature vector can be assumed to be mutual independent. An
example cluster and a sample’s subspace are shown in fig. 24.

However, all UBMs depend on their training data e. g., if an UBM is
trained by subjects speaking the same texts (which may vary within a
phonetic close-content), this UBM may be trained text-independently,
but its application scope is due to its training more restricted to an
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Figure 24: Cluster example with four components

according close-content scenario rather than to text- and language-in-
dependent application scenarios, because information about phones
cannot be modelled if they are not represented within the UBM de-
velopment dataset. Also majority feature occurrences of, e. g. phones,
channel noises, male or female gender and certain age ranges, will
cause UBMs to emphasise on those effects during training and like-
lihood estimations as described in section 2.4.2, rather than deliv-
ering an independent cepstral space cluster which also represents
feature vectors application-independently [79]. In contrast, on close-
text-content application scenarios as digit pass-phrases, UBMs are sup-
posed to operate better, if they are trained by according close-content
development datasets, because modelling phonetic content that never
will be requested from UBMs will cause noise and thus increase en-
tropy. Meanwhile close-content UBMs can also suffer from over-repre-
sented phonetic content e. g., if biometric users are asked to repeat
random pass-phrases which prevents replay attacks on verification
processes by including user knowledge11. Thus, speech features need
to be selected by reducing UBM over-fitting and preserving the fea-
tures natural distribution.

3.2.2 Intelligent feature selection

Hasan and Hansen [79] assumed feature cohorts which have very
small Euclidean within-distances e. g., MFCC features representing sin-
gle phones. Thus, they proposed an intelligent feature selection (IFS)
algorithm which is based on the Euclidean distance: only feature vec-
tors are selected for further processing that deliver new information
towards the last selected feature vector(s). Therefore, the feature vec-
tors are processed one by one and the current distance between a

11 This thesis is not emphasising how to fraud biometric speaker recognition systems
by e. g., real-time voice modulations, hence research and industry scenarios are em-
phasised.
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feature vector and its prior vector is compared to the distribution of
all distances: if the distance is too low to gather new information, it
is rejected, otherwise new information can be gained and the feature
vector is selected.

Euclidean distances are Chi-square distributed. Hasan and Hansen
[79] proposed to recursively update the Chi-square distribution’s pa-
rameters after each selected or rejected (processed) feature vector.
Thereby, feature vectors are selected, if the distance to the last se-
lected feature vector is within the upper α-quantile of the current
updated distance distribution. Thus, feature vectors likely to contain
new information about the cepstral space are selected by an adaptive
distance threshold. In fig. 25 the idea on cepstral cohort groups is il-
lustrated where only one representative from each group needs to be
selected, so that over-fitting can be reduced.
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Figure 25: Schematic feature space with cohort groups according to [79]

3.3 speaker subspace estimation

Speakers are modelled by their enrolment samples, such that an UBM

is adapted using the MAP algorithm described in section 2.4.4 towards
a speaker’s subspace. This speaker modelling approach is essential
for speaker verification techniques of the last 15 years which comprise
e. g., HMMs, GMMs, and i-vectors [12, 44, 64].

In this section model advantages and disadvantages of HMM- and
GMM-based speaker subspace estimations are discussed. Which com-
prise short-term content modelling and also full text-independent ap-
proaches.

3.3.1 Short-term content subspaces

In speech recognition phones and words are modelled using HMMs

[8, 9], see section 2.4.1. Thus, in speaker verification terms HMMs are
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defining short-term content spaces for e. g. phones, words or digits.
Hence, a HMM-based text-independent speaker verification system
first recognises which sample parts belong to which phones and sec-
ondly performs according likelihood score estimations.

During enrolments, each speaker needs to give such speech sam-
ples that all HMM models can be sufficiently trained by MAP adapta-
tion. HMMs are usually used for modelling words or phones, hence
spoken enrolment texts need to contain sequences such that accord-
ing speech data can be extracted and used for speaker enrolments.
Thereby, HMM UBM weights and variances are not updated, because
they comprise much more phone variation information than within-
speaker variations. Thus, only the means as speaker characteristics
giving information about articulation frequencies are MAP adapted.

A HMM score SHMM is calculated by the LLR between the probability
of a probe’s features Ψ being emitted from an enrolled speaker model
λχ and the probability of a probe sample being emitted from the
UBM model ΛUBM. Assuming already aligned states r = 1, . . . ,R of
the HMM model λ, such that all probe features Ψ can be written by
according sequences Ψr=1,...,R, a LLR score is computed by:

SHMM(Ψ |χ) =

R∑
r=1

∑
~ψ∈Ψr

log
S(~ψ|λr,χ)

S(~ψ|Λr,UBM)
. (68)

HMMs are able to model co-articulation effects as well, because
of their state-based signal modelling kind: each state is adapted to
speaker-specific articulation phases by MAP adaptation, see sections
2.4.1 and 2.4.4. Hence, they are able to take effects of short- and mid-
term features according to Kinnunen and Li [12]. However, this means
HMMs need a lot of training data to estimate sufficient UBM statistics
which vary from language to language, hence HMMs have disadvan-
tages on multi-lingual scenarios. Further, HMMs need to know the spo-
ken text or articulated phones, which raises especially in long-term
scenarios a lot of non-speaker recognition dependent issues e. g. false
phone recognitions. Also the Viterbi alignment complexity12 in HMM-
based speaker verification increases quadratically by the amount of
HMM states, and hence the recognised phone or word models do so
as well.

In contrast, GMMs are feature-wise evaluating samples without tak-
ing spectro-temporal effects as much into account as HMMs13, thus the
Viterbi algorithm needs not to be applied.

12 HMM-based verification is only a border area to this thesis’ work, and thus not ex-
plained in full detail. The complexity of the Viterbi algorithm is denoted in terms of
all states of all concatenated HMMs S and the amount of frames T which can be seen
as the sample time: O(|S|2T).

13 Spectro-temporal effects are only influencing GMM-based speaker recognition in
terms of ∆ MFCCs on very short spectral sequences. However, HMMs are influenced
by spectro-temporal features in terms of e. g., phone- or phrase-depending effects.
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3.3.2 Text-independent speaker subspace

GMM-based speaker verification techniques create one UBM cluster
representing the whole acoustical space text-independently [12]. The
effects of phones, channels, and speakers are modelled according to
the expectation maximization algorithm explained in section 2.4.3.
Hence, impacts of certain speech signal effects can only be roughly
assigned to certain GMM components, since various effects affected
the UBM parameters in order to obtain huge effect-independence and
thus, universality.

In a GMM-UBM system, speakers are enrolled by MAP adapting
the UBM by their enrolment samples as described in sections 2.4.4
and 3.3.1. Only mean UBM parameters are MAP adapted, because UBM

mean values are averaging speaker articulation frequencies, mean-
while weight and variance parameters are more compensating pho-
netic, and channel effects which cannot be sufficiently estimated by
a few enrolment samples having restricted variational effects [12, 13,
44, 48]. Thus, GMM mean values represent samples and speakers. The
mean concatenated vector-form is referred to as supervector ~µ [12, 13].

During verification, a probe sample’s features Ψ are scored by their
emission probability SGMM(Ψ |λχ) of the speaker model λ, see eq. 34

which satisfies H0. Further, the emission probability SGMM(Ψ |ΛUBM)

of the UBM modelΛUBM satisfiesHA, which can be written in a feature
vector-wise processing as [44, 48]:

SGMM(ω|χ) =
∑

~ψ∈Ψω

log
S(~ψ|λχ)

S(~ψ|ΛUBM)
. (69)

The score SGMM(ω|χ) represents the LLR score as the GMM-UBM com-
parator’s result.

3.3.3 Supervectors as templates and features

Supervectors are in combination with an UBM a complete speaker
model, hence on GMM-UBM systems they are speaker templates.
However, in terms of the UBM being a cluster supervectors denote
the subspace’s cluster center. The difference between sample and UBM

supervectors represent sample offsets from the initial UBM cluster:

UBM-offset = ~µω − ~µUBM. (70)

i-vector-based speaker verification systems are interpreting super-
vectors as features that were extracted by UBMs in order to determine
the UBM offsets [7]. By extracting speaker-characteristic values from
the sample-dependant offsets more accurate template-probe compar-
isons are expected.
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3.3.4 Characteristic cepstral space offsets

Characteristic UBM cluster offsets were analysed with respect to HMM

supervectors [80], and GMM supervectors [51] where Kenny et al. [23]
supposed a PCA-based supervector mapping into an eigenvoice space.
Eigenvoice models assume discrete channel effects [23], such that for
given template and probe supervectors one channel-dependant vector
is synthesised by a speaker vector (eigenvoices) and an offset vector
(eigenchannels) which is afflicted by Gaussian noise. Hence, random
speaker samples can be estimated and classified.

In 2008 Kenny et al. [23] motivated JFA of GMM supervectors in or-
der to treat speaker-characteristic factors and channel-dependant fac-
tors separately. Comparing eigenvoices with JFA, the eigenvoices ap-
proach models sample variabilities, the JFA approach models speaker
variabilities [23]. JFA analyses speaker factors ~y, channel factors ~x and
residual factors ~z by extracting speaker-dependant eigen-alike vec-
tors. Thereby, eigen matrixes V, U, D , T map speaker-dependant
supervector variabilities into a lower dimensional space [23, 50, 51]:

~µω = ~µUBM + V~y(χ) + U~x(ω) + D~z(λχ) (71)

where ~µUBM is the speaker-independent UBM supervector, χ,λχ denote
the speaker, and the speaker model, respectively. Hence, the sample-
dependant UBM offset is decomposed into speaker and channel fac-
tors.

However, Dehak et al. [7] found out that the eigenchannel matrix
U contains also eigenvoice information, hence they suggested a total
variability factor analysis in order to reduce redundant information
which yielded biometric and computational performance gains.

3.3.5 Total variability factor analysis

The total variability approach models a sample’s supervector ~µω on
the basis of a speaker-independent supervector ~µUBM which is af-
flicted by the variation of a speaker-characterising i-vector [7]. Thereby,
a total variability matrix T which intentionally synthesises all varia-
tions that can occur on a speech sample and maps a low-dimensional
i-vector~i in the supervector space:

~µω = ~µUBM + T~i(χ). (72)

In terms of a supervector – UBM offset modelling as in eq. 70, analog-
ically eq. 72 can be rewritten as:

~µω − ~µUBM = T~i(χ). (73)

Thus, the speaker-characteristic i-vector is determined by decompos-
ing a supervector’s UBM offset with respect to a prior modelled total
variability matrix.
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The total variability matrix is a-priori computed on a development
dataset, e. g. the UBM data [81]. In order to efficiently estimate proper
i-vectors according to eq. 73 sample supervectors ~µω need to be esti-
mated and centered by the UBM supervector ~µUBM. Supervectors are
concatenated GMM mean values which are computed by iterative MAP

adaptations, see section 2.4.4. On each iteration zero and first order
Baum-Welch statistics ~Nc, Fc are influencing the deterministic com-
putation of a samples supervector ~µω. Hence, the initial Baum-Welch
statistics are already representative for a supervector. Further, the cen-
tered first order Baum-Welch statistic Fc,centered of the initial MAP itera-
tion represents the supervector – UBM offset, see section 2.4.2.1. Thus,
a conceptional iterative T matrix training paradigm can be defined by
the least square error between the UBM offset and its decomposition
terms from eq. 73:

argT,~i(χ) min ||~F(ω) − T~i(χ)||2 (74)

where ~F(ω) denotes the supervector-alike concatenation of centered
first order Baum-Welch statistic Fc,centered of all GMM components c.
Where eq. 74 can be interpreted as a minimum divergence and a
maximum likelihood, respectively. An initial total variability matrix
can be set randomly.

As the speech signal’s MFCC features are assumed to be Gaussian
distributed, a speaker’s i-vectors are assumed to be Gaussian distrib-
uted as well. An universal i-vector variance lT is influenced by the
total variability matrix T, the diagonal UBM covariance ΣUBM, and
the zero order Baum-Welch statistics ~Nc which are concatenated and
expanded to a diagonal matrix ~N(ω). The zero-order Baum-Welch
statistics represents the posterior probability of a UBM component or
likewise the component’s influence on a speaker GMM, hence the UBM

covariance needs to be weighted by ~N(ω). By using the total vari-
ability matrix and its transposed form, the variance effects can be
mapped into the i-vector space:

lT(ω) = I+ T ′Σ−1
UBM

~N(ω)T (75)

where I denotes the identity matrix. The expected value of a normal
distributed i-vector is then computed by two standardised moments,
first by normalising the centered first order Baum-Welch statistics
~F(ω) with the UBM covariance and mapping it into the i-vector space,
second by normalising the mapped value using the i-vector variance:

E[~i(χ)] = lT(ω)−1 ◦T ′Σ−1
UBM

~F(ω). (76)

where ◦ denotes the Hadamard product.
During training of the total variability matrix all samples ω ∈ Ω

are treated as being produced by different speakers, hence all within-
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and between-variabilities are modelled as well. Total variability matri-
ces are re-estimated by a maximum likelihood adaptation of the mod-
elled variabilities with respect to the expected variabilities. Therefore,
two accumulators are defined: Ac representing the component-wise
i-vector covariance weighted by zero order Baum-Welch statistics over
all samples, and C representing the variance between centered first
order Baum-Welch statistics and i-vector means:

Ac =
∑
ω∈Ω

~NclT(ω)−1, (77)

C =


C1
...

CC

 =
∑
ω∈Ω

~F(ω)E[~i(χ)] ′. (78)

The total variability matrix T can be computed block-wise by solving

TcAc = C (79)

which is according to Kenny [81] a simplified eigen-analysis within
the PCA case of re-estimating an eigenvoice model. Fig. 26 shows an
exemplary total variability matrix of a short-duration, close-context
development set containing German digits from zero to nine. By in-
terpreting the total variability matrix as an offset mapping, some com-
ponent offsets are more important to all i-vector elements than others
(zero weight), and i-vector elements may depend more strong on cer-
tain GMM components rather than on all.
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Figure 26: Total variability matrix example: mapping the supervector – UBM
offset ~µω−~µUBM (64 components of 39 MFCCs = 2 496 dimensions)
to 300 dimensional i-vectors
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3.4 identity vector systems

identity-vectors (i-vectors) can be directly extracted from a sample by
processing the Baum-Welch statistics, so that the expected i-vector is
estimated as in eq. 76 [7]:

~i(χ) = (I+ T ′Σ−1
UBM

~N(ω)T)−1 ◦T ′Σ−1
UBM

~F(ω) (80)

where the extracted i-vector ~i(ω) represents speaker-characteristic su-
pervector – UBM offsets. An i-vector-based speaker space can be created
by using UBM development samples:

• centering i-vectors by a-priori observed means ~µDevSet leads to an
averaged supervector – UBM offset representation where oppo-
site directional vectors implicate polarised speaker sub-spaces
which could have more similar directions before centering,

• then i-vectors are transformed into a spherically symmetric density
by a linear whitening transformation learned from data samples [82],
see section 2.4.7, so that i-vector elements are decorrelated by a
whitening matrix W and hence span a vector space,

• further, data shifts are compensated by length-normalisation
where data set mismatches between development and evalua-
tion data may cause huge differences on lengths of similar di-
rectional i-vectors of the same speaker [82].

Raw i-vectors ~iraw are transformed into unit spherical i-vectors ~iunit by
applying the following equation:

~iunit =
(~iraw − ~µDevSet)W
||(~iraw − ~µDevSet)W||

(81)

where further in this thesis ~i = ~iunit will be denoted to ease nota-
tions. These i-vectors are state-of-the-art features [45, 46] which can be
used as templates ~i(χ) of speakers χ and probes ~i(ω) of verification
samples ω as well. Fig. 27 illustrates exemplary i-vector spaces before
and after the unit-sphere transformation where the spherical speaker
placement promises a very good speaker-separability in terms of bio-
metric recognition.

3.4.1 Biometric enrolment and verification

Biometric speaker recognition systems comprise enrolment, re-enrol-
ment, and verification processes. Speaker reference templates are cre-
ated as mentioned by extracting an i-vector from an enrolment sample.
For re-enrolments Ferrer et al. [83] proposed the average template of
all enrolment i-vectors, since the average i-vector is assumed to be more
robust towards within-speaker variabilities, compare fig. 27.
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(a) Raw i-vectors (b) Unit i-vectors

Figure 27: i-vector space before and after unit-sphere transformation accord-
ing to [7] where both axis denote two different i-vector elements
for five different coloured speakers

During verification processes i-vector features are extracted and used
as probes. i-vectors can be compared by e. g. the cosine similarity be-
tween them, which can be computed as the length normalised dot
product of template~it and probe~ip i-vectors:

Scos =
~it ·~ip
||~it|| ||~ip||

. (82)

In this thesis focus is placed on the simple cosine distance as i-vector

comparator. However, during the last years Gaussian Probabilistic Lin-
ear Discriminant Analysis (G-PLDA) became popular among speaker
recognition for scoring the likelihood of two i-vectors14.

3.4.2 Score normalisation

Score normalisations are applied to augment comparison scores with
additional information e. g., about an enrolled reference or a cur-
rent verification probe. For the purpose of applying standard score
normalisation methods by preserving the symmetry between i-vectors,
Kenny [24] introduced the spherical normalisation (s-norm). S-norm re-
lies on the two standard normalisations of zero and test score normal-
isation which are both computed similar by normalising a score S to
S’ by mean and variance µ,σ of observed score distributions:

S ′ =
S− µ

σ
. (83)

The zero score normalisation (z-norm) computes the score mean µZ
and standard deviation σZ of a template i-vector compared against an

14 PLDA is a a special case of both, LDA and JFA: the relationship between PLDA
and standard LDA is analagous to that between factor analysis and principal compo-
nent analysis [84]. G-PLDA is a Gaussian PLDA variant: i-vectors are assumed to
be Gaussian distributed, such that each i-vector emission has a posteriori probabil-
ity N(~µG-PLDA + W~h+ B~g,ΣG-PLDA) which is influenced by prior-trained speaker-
within and -between variances W, B resulting in JFA-like decomposition of character-
istic speaker- and noise-factors ~h, ~g [24, 84, 85, 86, 87].



3.4 identity vector systems 53

i-vector collection Z, and the test score normalisation (t-norm) compares
similar parameters µT,σT of a probe i-vector against an i-vector collec-
tion T. Hence, a verification score S can be normalised by centering
impostor scores having unit variance by known impostor score distri-
butions with respect to a template i-vector and of a probe i-vector as if
it was an impostor i-vector,

S ′ =
1

2

(
S− µZ
σZ

+
S− µT
σT

)
. (84)

However, the s-norm can be computed more robust by adaptively
selecting collection subsets of Z,T which is referred to as adaptive
spherical score normalisation (AS-norm) [50, 74, 75]. The AS-normal-
ised score S ′ differs from s-norm by the scores which are used to com-
pute the z/t-statistics: rather than using all scores, only the most com-
petitive scores (e.g. top-100) are applied to model according speaker
cohorts. Dehak et al. [64] applied the AS-norm on i-vectors and showed
that the score normalisation can already be applied on comparison-
level as a normalised cosine scoring for a template-probe i-vector~it,~ip
comparison:

S(~it,~ip) =
(~it −~iµZ

)T (~ip −~iµT
)

||ΣZ
~it|| ||ΣT

~ip||
(85)

where ~iµZ
,~iµT

denote mean i-vectors of z- and t-norm collection sets
and ΣZ,ΣT are according diagonal covariance matrices. However, the
emphasis of this thesis is placed on AS-norm, since the normalised
cosine is an optimisation step.

3.4.3 System fusion

Speaker verification systems can be fused on different levels depend-
ing on their comparators. HMM, GMM, and i-vector-based verification
systems can be fused on the score-level domain by e. g., logistic regres-
sion. Logistic regression fuses the scores of subsystem s = 1, . . . ,S
into one score S’ by a weighted linear combination of all subsystem
scores Ss [40]. A score fusion formula might take a general score offset
a into account as well as additional quality-based information which
can be briefly denoted by a quality function Q [25, 40, 88]:

S ′(~it,~ip) = a+
∑
s∈S

bsSs(~it,~ip) + cQ(~it,~ip) (86)

where bs, c are weights. The parameters a,bs, c need to be deter-
mined by logistic regression. Logistic regression maximises the likeli-
hood of a prediction model to perform well [20]. Thereby, the cross-
entropy error H is minimised which in the case of speaker recognition
can be the Cllr metric [40, 41], see section 2.3.5.
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Logistic regression is an iterative learning method which uses the
gradient descent: for each weight configuration ~w = 〈a,bs, c〉 a cross-
entropy-based gradient ∇H is calculated on N training scores with
labels yn by [20]:

∇H(~w) = −
1

N

N∑
n=1

ynSn

1+ eyn ~w
TSn

. (87)

The weight configuration is updated by ~w = ~w− ν∇H(~w) where ν
is a learning rate coefficient which is usually set to a small positive
real15 [20]. A logistic regression model is found if the gradient descent
is zero or a maximum number of iterations e. g., 100, is reached, see
algorithm 1.

Data: Initial weights ~w0 = 〈a,bs, c〉 = ~0

Result: Final weights ~w

while i=1,. . . ,100 do
Compute ∇H(~wi−1);
if ∇H(~wi−1) == ~0 then

break;
end
Update weights ~wi = ~wi−1 − ν∇H(~wi−1);

end
Algorithm 1: Logistic regression, see Abu-Mostafa et al. [20]

Further, Ferrer et al. [83, 89, 90] proposed a feature-level i-vector

fusion where i-vectors extracted on different speech signal features,
i. e. prosodic polynomial contours16 (ProsPols) [83], are merged to
a grand i-vector on which LDA can be performed in order to obtain low-
dimensional i-vectors and removing information redundancy. Score-
level and grand i-vector speaker verification system fusions are com-
pared in fig. 28 with respect to fig. 3. In this thesis focus is placed
on score-level subsystem fusion, because different comparator based
subsystems are addressed.

3.5 summary

In this chapter speaker recognition methodologies were presented,
that motivated by human anatomy and articulatory motion. Speech
is transmitted by changes in air pressure which is influenced by e. g., a
humans fundamental frequency characterising their voice by the glot-
tal pulse rate that depends on the shape of a human’s vocal fold. Be-
sides biological characteristics, the human voice also has behavioural

15 E. g., 0.1, 0.01, or 0.001.
16 ProsPols are Legendre polynomial approximations of order 5 of pitch and energy signals

over a region of 20 segments [83].
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Figure 28: i-vector system fusions on score- (top) and feature-level (bottom)

characteristics which depend on the person’s cultural background as
well as the spoken language or dialect as well. In order to extract char-
acteristic features, VAD is applied, such that non-speech signals are
discarded before any feature is extracted. Fig. 29 summarises speech
signal processing from VAD processing of the sample, MFCC feature
extraction, to UBM-based speaker template, reference, and probe cre-
ations with respect to the design of a general biometric system, see
fig. 2 in section 2.2.

A basic MFCC feature extraction transforms the time-domain raw-
values into the frequency domain by Fourier transform, so that coef-
ficients describing speaker-dependant frequency bandwidths can be
computed. MFCCs are obtained by transforming the coefficients back
into time-domain using the inverse discrete cosine transformation.
However, speech variations also depend on the spoken content which
has basic units, the phones or phonemes, respectively. By extracting
features from short-time segments, detailed information about the ar-
ticulatory motions of speakers can be computed.

Further, signal processing also computes velocity and acceleration
coefficients in order to augment the short-term MFCCs. The extracted
features are then normalised by feature warping, so that within-sam-
ple variations are minimised: the observed MFCCs are mapped onto
a standard distribution according to their value within an e. g., 300

features sequence. MFCCs are referred to as being independent and
Gaussian distributed.

An universal feature space of MFCCs is modelled by GMMs where a
speaker-independent cluster of the acoustical space is referred to as
UBM. By modelling the whole acoustical space using GMMs, speaker
recognition becomes text-independent, since features can be scored
without knowing the spoken context surrounding them. In contrast,
HMM-based UBMs are text-dependant, since they model e. g., a se-
quence of words or phones. However, by knowing the spoken text,
HMMs modelling text-parts can be combined and thus, HMMs can be
used for text-independent speaker verification under higher computa-
tional effort as well. All further speaker recognition processing steps
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depend on the quality of this UBM. In order to reduce over-fitting of
too frequently occurring features, IFS was motivated which selects
only those features which are contributing new information towards
an UBM.

Speakers are assumed to create subspaces within the acoustical
space, hence biometric speaker verification scores the probability of a
probe belonging more to the claimed speaker’s subspace, rather than
to the UBM space. Thereby, subspaces of speakers are estimated by
MAP adapting the UBM means using their enrolment samples. Hence,
the UBM means form speaker templates which are referred to as super-
vectors. In GMM-UBM or HMM-UBM systems probe samples are scores
against the UBM and the supervector-based speaker model. Where su-
pervectors are also strongly influenced by environmental noise and
the articulated phones.

identity-vectors (i-vectors) were motivated in order to extract only
speaker-characteristic features or likewise principal speaker compo-
nents which do not depend on other speech signal influences, such as
channel noise or the phonetic content. Therefore, supervector – UBM

offsets were analysed with respect to all variabilities within a develop-
ment set. Total variability matrices are trained in order to decompose
these offsets into i-vectors by a minimum divergence between the su-
pervector – UBM offset and it’s total variability/i-vector representation
among a development set. Hence, the total variability matrix can be
seen as a mapping from supervector offsets to i-vectors. Fig. 30 gives
an overview on HMM-UBM, GMM-UBM, and cosine i-vector comparators.



3.5 summary 57

HMM-UBM

Comparators

Score(s)

GMM-UBM

Cosine

References

Probes

HMMs 

(eg. digits)

GMM

UBMs
HMM

models

GMM

model

i-vector

template

MFCC

features

i-vector

features

Figure 30: Overview on speaker verification comparators

Further i-vector processing spans a spherical unit space of i-vectors

by space-centering, axis-decorrelation due to whitening, and vector
length normalisation. An i-vector scoring can then be performed by
the simple cosine distance as similarity metric. In order to augment
verification scores with knowledge among the development set, score
normalisations can be applied, where the adaptive spherical normal-
isation (AS-norm) applies zero- and test-normalisations (z-, t-norm).
While z-norm estimates the distribution of impostor scores on the
reference of a subject, t-norm estimates the distribution of impostor
scores using a current probe sample. By taking only the top-k scores
for each distribution estimation into account, the normalisations are
supposed to become adaptively and thus more robust. The spheri-
cal shape of i-vectors can be preserved by simply averaging z- and
t-normalised scores. Speaker verification systems can be fused e. g.,
on score-level by a-priori training a linear regression model such that
the verification cross-entropy Cllr is minimised.
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S H O RT D U R AT I O N A N D VA R I A N T D U R AT I O N
S P E A K E R V E R I F I C AT I O N

The performance of speaker verification systems strongly depends
on the speech sample durations [25, 91, 92]. Long duration samples
deliver much more information about a speaker in terms of the ex-
traction of sufficient statistics compared to short duration samples.
Short duration samples comprise only few features that are known
to result in a poor speaker representation [17]. Though, the rejection
of impostors might be possible after few seconds of speech [93, 94],
investigations are needed for accurately accepting genuines as well.

This thesis places emphasis on short duration speaker verification
in close context scenarios, and on variant duration speaker verifica-
tion which is a current NIST research task on speaker recognition
[46, 69, 95]. This chapter provides an overview on related literature on
short and variant duration research for which deductive hypothesis
will be pointed out that will be examined within the thesis evalua-
tions.

4.1 short duration speaker verification

Short duration samples are relevant for e. g. pass-phrase-based indus-
try scenarios [96], and on phonetically-closed forensic scenarios [17,
97]. Fatima and Zheng [97] proposed a research agenda for short du-
ration speaker recognition where they differentiated between speaker
modelling approaches e. g., HMM-UBM, GMM-UBM, JFA and i-vector sys-
tems. For the purpose of obtaining more information about short du-
ration speech, they supposed to analyse phonetic categories using the
known approaches, so that e. g., vowel, nasal, and consonant phones,
are compared. This approach seems reasonable on very short dura-
tion samples, such as short yells for help which are given e. g., in
the shooting case of Trayvon Martin [2]. But the speech data can just
be analysed without taking between-phone variations into account,
since there might be no comparable data.

Zhang et al. [98] examined phone-based GMM-UBM systems which
only use the most present phones within samples, so that sufficient
statistics can be computed for the top-k phones of each sample and
used for verifications. Thereby, phone GMMs are referred to be more
accurate on according phone-based speech data than text-indepen-
dent GMMs are. They emphasised samples having less than two sec-
onds of speech.

59
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However, on automated scenarios comprising e. g., more than 15

phones within five seconds (five digited pass-phrases), additional
computational effort will arise in terms of accurately extracting phone
dependent speech subsequences. For the purpose of examining in-
dustry scenarios relying on pass-phrases and in order to avoid ad-
ditional mismatch risks of speech subsequence alignments by e. g.
HMMs. Phone-based model techniques will not be examined in this
thesis as much as the i-vector approach. Thus, emphasise is placed
on text- and language-independent approaches. Larcher et al. [96]
evaluated i-vector systems in scenarios with phonetically constrained
contexts in terms of commands and passphrases. By reducing the
modelled phonetic content, their systems became more accurate on
according evaluation data.

4.2 hypothesis on short duration scenarios

Fatima and Zheng [97], Zhang et al. [98], and Larcher et al. [96] are fol-
lowing the same approach: if the phonetic content is a close set, then
verification accuracy can be improved by modelling only the expected
content, thus under-fitting of the UBMs and speaker models can be
avoided. Hence, if short duration scenarios are aimed, then divide and
conquer algorithms with respect to the phonetic content and channel
effects are applicable: computational efforts will not exceed real-time
requirements, though enrolment samples need to have verification
sample alike shapes, which could be achieved by e. g., multi-session
enrolments containing different subsequences of the expected spoken
phrases within verification trials. However, due to the a-priori knowl-
edge of possible verification samples, the usage for (full) text- and
language-independent applications might not be given, since either
the phonetic content is a closed-set, hence the system configuration
is fix, or according intensive enrolment sessions will be necessary in
order to avoid poor comparison quality due to context mismatches.

Concluding hypothesis: for the purpose of robustly comparing short
speech patterns, short duration scenarios need to be separated from each other
and to be solved on similar phonetic contexts and on similar signal qual-
ity shapes such as commands, passphrases, digits or phones, and phonemes
which comprise industry and forensic terms, respectively.

4.3 methodologies on variant sample durations

Varying sample durations cause huge gaps between speech samples:
depending on the phonetic content supervectors vary in terms of over-
and under-presented statistics of the UBM components. This effect
was examined by Hasan et al. [88] and is referred to as acoustic holes.
Acoustic holes can be explained as the miss or under-representation
of phonemes in short duration samples which are much more rep-
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resented in mid-term (20–40s) and long term samples (> 40s, full),
see fig. 31. Further, Hasan et al. [88] showed that the dependency of
unique phone occurrences to the sample duration is logarithmic, see
fig. 31b.

(a) Phoneme histograms by duration

(b) Duration variance causing acoustic holes

Figure 31: Illustration of acoustic holes according to [88]

By training i-vector systems using variant-duration samples e. g.,
due to random sample truncations, performance gains were reported
[88, 92]. However, Vogt et al. [99] showed that the trace1 of eigen-
voice matrices trained by different sample lengths increase by decreas-
ing the sample durations: from 105.7 on > 40s samples to 329.8 on
< 10s samples of the 2005 NIST SRE data. Which illustrates that first
there are totally different dependencies within the factor decomposi-
tion matrices and second that on shorter samples the factor influence
of the components grows a lot, up to 312%. Hence, factor analyses
would need to be performed depending on the constellation of enrol-
ment and verification sample durations which is computational not
reasonable, thus a duration-invariant i-vector extractor will need post-
processing compensations of duration mismatches.

Mandasari et al. [25] and Hasan et al. [88] further examined the
use of Quality Model Functions (QMFs) which are applied as in the
logistic regression case of system fusions, see section 3.4.3. Thereby,
the QMFs rely on enrolment and verification sample durations de,dv,
such that the logarithmic observations from fig. 31 are preserved. A
possible QMF can be denoted by the duration LLR’s absolute value
[25, 88]:

Q(de,dv) =
∣∣∣∣log

de

dv

∣∣∣∣ (88)

1 The trace of a matrix is the sum of it’s diagonals.
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which is a log-symmetric distance metric. According to Mandasari et
al. [25] this score calibration method is able to yield gains compared
to a system calibration applying only logistic regression as in eq. 86.

Further, Mandasari et al. [17, 25] evaluated the performance of
i-vector systems with respect to enrolment-verification duration groups
where better performances were observed on > 40s duration enrol-
ment samples. Improvements were reported on by normalising the
i-vectors as described in eq. 85 using the complete development set [17],
and by applying logistic regression with respect to duration groups
of < 5s, < 10s, < 20s, 40s, and > 40s (full) samples [25] which were
chosen according to the logarithmic dependency observation regard-
ing to the acoustic holes [88]. In comparison to the QMF calibrations,
the duration-matched score calibrations were reported to averagely
yield less entropy in terms of Cllr. QMFs comprise three to five free cal-
ibration parameters and the duration-matched calibration comprises
50 free parameters [25] that need to be determined by logistic regres-
sion.

However, by setting a shared scaling parameter – in terms of eq. 86

the weight b is shared among all 25 duration group constellations –
Mandasari et al. [25] observed a saddle-plane shaped distribution of
the free offset parameters, see fig. 32. Where the saddle-plane shape
seems to be symmetric by log-durations, and edge mismatches might
have been occurred due to hard-decisioned duration group mem-
berships e. g., 0–5s belonging to a 5s duration group. Though, soft-
memberships as mentioned by eq. 88 seem not to have this hard-
decision boundaries. Further, on full enrolment i-vectors, which will
be emphasised in this thesis, the offset parameters are distributed
in a similar logarithmic manner as the acoustic holes to the speech
signal duration reported in fig. 31b.

Figure 32: Calibration parameter distributed in saddle-plane shape on log-
durational axes according to [25] where dm = de,dt = dv
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4.4 hypothesis on duration variance and subspaces

Acoustic holes are the issue to deal with focusing on duration vari-
ance. They are shown to logarithmically depend on the sample dura-
tion [88]. Techniques compensating performance break-downs rely on
score calibration models such as QMFs [25, 88], on training the recog-
nition system with data of various sample durations [88, 92], or on
different i-vector extraction/post-processing [17, 99]. Systems whose
performances strongly relies on their training data seem not high-
convenient, and total variability matrices trained according to vari-
ous duration constellations seem also not to be sufficient for facing
unknown speech data.

However, Vogt et al. [99] showed the existence of duration-depend-
ing subspaces within an eigenvoice model, hence this effect needs
to be compensated as well in order to compare same spaced unit
i-vectors. Further, Mandasari et al. [25] presented the advantage of
duration-matched compensation approaches in comparison to gener-
alised QMF functions which might yield more gains on same-spaced
i-vectors. Though, for the purpose of keeping the compensation of
acoustic holes as simple as possible and providing sample-adaptive
acoustic hole compensation methods, the training of a fix logistic re-
gression parameter set seems to emphasise the compensation of other
effects, too.

Concluding hypothesis: the divide and conquer strategy of treating
probe i-vectors by a-priori knowledge of duration-matching i-vector subspaces
promises to dynamically compensate the effects of acoustic holes. This implies
the i-vector relocation into a common subspace that can be realised by relocat-
ing template and probe i-vectors. However, the issue of acoustic holes or like-
wise quality mismatches is less about compensating the duration mismatches,
it is more about covering any articulatory motion. Thereby, algorithms need
to acknowledge that the produced speech within a subject’s enrolment sample
comprise very sparse enrolment data in comparison to the diversity of sounds
which can be produced by humans. Further, the comparison algorithms need
also to acknowledging the signal’s unsteadiness in terms of the human voice
as well as in terms of channel noise effects. That also is the compensation of
duration mismatches which is a more feasible issue to emphasise research on.

4.5 duration invariant adaptive score normalisation

In order to adaptively relocate template and probe i-vectors into a com-
mon subspace, techniques need to be established that can estimate
the subspaces of each template and probe i-vectors. For this purpose
compensations e. g., based on feature-level and score-level, are possi-
ble where this thesis emphasises on score-level compensations.

The AS-norm uses information about the score distribution of both,
template and probe i-vectors, among a development set to normalise
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verification scores, see eq. 84. Thereby, the most similar development
i-vectors are adaptively selected for estimating template/probe-charac-
teristic i-vector subspace properties on the score-level domain. By se-
lecting development set i-vectors according to the quality mismatches
that are measured in terms of sample durations or likewise the impact
of acoustic holes, a duration invariant adaptive score normalisation
can be motivated as an extension of the standard AS-norm.

As previously mentioned, the presence of acoustic holes increases
the entropy of shorter voice samples due to performance losses which
motivates the construction of different i-vector sufficiency-classes.

In terms of duration as a quality metric, Q quality classes can be
denoted as: Q = {Λ0, . . . ,ΛQ} representing i-vector sufficiency classes.
Samples are then associated by their duration ds to a sufficiency class
Λc by the lowest log-duration distance,

argΛc min | log(ds) − log(dΛc)|. (89)

4.5.1 i-vector sufficiency classes

In the proposed system duration-based groups are defined for the
sufficiency classes where the number of quality classes is limited to
Q = 5, i. e. obtained results can be directly compared to those re-
ported in [25, 88]. By preserving comparability to the related work on
short-duration speaker recognition, sufficiency classes are denoted
according to the researches on acoustic holes of Hasan et al. [88]
and Mandasari et al. [25]. The proposed sufficiency-classes are sum-
marised in tab. 3 where Λfull is intended to comprise all expected
high-sufficient i-vectors which might cause non-optimal results, but
preserves low-computation efforts.

Table 3: Sufficiency classes and corresponding durations

Sufficiency class Duration

Λ5 0–5 sec

Λ10 5–10 sec

Λ20 10–20 sec

Λ40 20–40 sec

Λfull > 40 sec

Fig. 33 illustrates sufficiency-class dependencies with respect to a
sample’s duration according to eq. 89. The maximal neighbour dis-
tance of sufficiency-class within the denoted classes Λ5–40 is log

√
2

and log 2 between two neighbour classes. Whereby, the classesΛ5 and
Λfull comprise several quality classes e. g., of 1, 2, 80 and 160 second
durations. In tab. 3 quality classes are labelled by the upper duration
bound and samples are assigned to classes by the next highest dura-
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tion class having a maximum distance of log 2, besides Λ5,full which
comprise extreme boundary quality classes.
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Figure 33: Duration-based filter for i-vector sufficiency-classes denoting differ-
ent quality shapes of speaker-representation where summarised
classes are dotted

4.5.2 Parameter estimation

For the z- and t-norm parameter AS-cohorts are pre-selected in the
following manners:

• z-norm simulates impostor verifications on averaged enrolment
templates ~it, thus only Z i-vectors will be used which belong to
the same sufficiency class as the probe i-vector Λdp :

Z = {~iΛdp | max
top100

S(~it,~iΛdp )}, (90)

• t-norm simulates impostor verifications comparing the probe
i-vector~ip to development set templates, where enrolled speakers
have full i-vectors, so that the vast majority of durations is greater
than 60 seconds Λ>60 e. g., only T i-vectors will be used extracted
from samples with longest durations:

T = {~iΛ>60 | max
top100

S(~ip,~iΛ>60)}. (91)

4.5.3 Score estimation

The proposed duration-adaptive extension of AS-norm normalises
the scores according to eq. 84. By placing emphasis on duration-based
sufficiency classes, recognitions are treated duration invariantly e. g.,
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normalised scores are expected to be distributed without creating
entropy due to duration mismatches. Further, an overall improve-
ment can be expected, since scores of all sufficiency classes are nor-
malised to more similar distributions of genuine and impostor scores.
As a consequence, no additional entropy is expected, which could
arise due to score-distribution mismatches, i. e. caused by fix across-
classes thresholds. Fig. 34 illustrates how variant-duration samples
will be processed by the proposed duration invariant AS-norm exten-
sion. Further, please find our submitted Speaker Odyssey 2014 paper
towards duration invariant AS-norm in appendix D.

Development set 

i-vectors

Subset

z-norm

Subset

t-norm

Probe i-vector

with duration

Λsubset

dp == dΛ

Λ>60

Figure 34: Duration-based normalisation subsets



5
S P E A K E R V E R I F I C AT I O N F R A M E W O R K

For the purpose of designing a biometric speaker verification frame-
work, this chapter entitles research requirements, concludes a system
design that is based on ISO/IEC 19575-1 [26], and states a prototype
framework’s implementation. In the following sections requirements
are named and then marked by (a-k). For the purpose of demon-
strating where and how the requirements are covered by the frame-
work design, the design description will refer to these marks. The
last section of this chapter will explain a basic implementation of the
proposed framework design.

5.1 requirements

In research terms, a speaker verification framework should comprise
state-of-the-art recognition techniques such as the GMMs and i-vector

approaches (a). Further, in more general terms, a framework should
be easy to extend with other recognition methods (b) or further
pre- and post-processing methods (c) and should include third-party
recognition results as well (d) for system fusions. Since research may
place focus on recognition parameters like the UBM size in terms of
components, an according framework should give the opportunity to
easily store and load data with respect to a system’s configuration.
Within configuration changes the according data should be replaced
if existing or otherwise collected (e). For the purpose of providing
well-defined framework processing, each parameter configuration re-
quires an according implementation (f).

A speaker verification framework is intended to process existing
speech samples1 (g) and verify enrolled subjects by biometric pat-
tern recognition, see chapters 2, 3. Thereby, industry-applicable sub-
ject use cases as enrolment, re-enrolment, and verification need to
be concerned (h) as well as performance evaluation use cases where
enrolment and verification processes are performed on a recognition
system, such that performance metrics, as mentioned in section 2.5,
can be calculated (i). Both use cases differ in terms of processing
time: the subject-based use cases require single-processing while the
evaluation case aims at fast computations (j) e. g., through parallel
processing or multi-threading.

Further, the application-scope or evaluation scenario of GMM-based
speaker recognition relies on a system’s development database e. g.,
UBMs modelled by digit development speech corpora are more ap-

1 Speech samples are expected to be in raw pulse-code modulation format.

67
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plicable to digit scenarios than to open-context scenarios. Hence, a
general framework needs to differ between several development sets,
and various application or evaluation scenarios (k).

5.2 framework design

Following up the ISO/IEC 19575-1 general biometric system design
[26], compare fig. 2, a speaker recognition framework needs to sepa-
rate signal, comparison, and decision making processing.

5.2.1 Biometric system processing

Speaker recognition signal processing comprises reading raw speech
samples (g), VAD, MFCC feature extraction, and feature warping, com-
pare chapter 3. Where comparators rely on different features e. g.,
GMM-UBM systems process MFCCs as features, while i-vector systems
are based on UBM Baum-Welch statistics (a), see sections 3.3, 3.4.
Hence, signal processing might already use GMMs as shown in fig. 29

(a). Also, systems may differ in decision making e. g., in terms of
applied score normalisation techniques, system fusions, or score cali-
brations (a), see sections 2.3, 3.4, 4.5. Therefore, Object-oriented Pro-
gramming (OOP) provides class and type enumeration-based design
patterns which benefit from the modularity of OOP: by providing a
system class with abstract functions many requirements can be full-
filled where abstract functions are:

• float** features := extract_features(sample) (c),

• void enrol(identity, features) (a, b),

• float* probe := create_probe(sample) (a, b)

• float score := compare(reference, probe) (a, b),

• float score := normalise(reference, probe, score) (c).

Where float* shall indicate a vector of floats, and the abstract func-
tions may use system depending parameters which are denoted as at-
tributes. Such attributes can comprise e. g., feature types (VADs, MFCCs,
feature warping), comparator parameters (UBM components, i-vector

factors), and score post-processing methods (AS-norm, fusion, cali-
bration) (a-d). All attribute variations can be defined by enumera-
tions and in order to preserve well-defined processing, implementa-
tions need to be done according to each enumeration value (f).

Biometric systems are implemented by inheriting the abstract sys-
tem class and defining the abstract methods by existing modules
or using external third-party software. Thereby, a mocking inherited
dummy system class provides the opportunity of only evaluating the
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results of a third-party speaker recognition system (d) whereby re-
sult file exchange formats need to be defined as well2. By defining
mocking inherited dummy classes for each processing variant, the
framework will also preserve the opportunity to include third-party
software on every processing stage (d).

For the purpose of preserving configuration variability and hot data
swapping, each class has save and read functions where a class’ at-
tribute values are stored into Hierarchical Data Format V5 (HDF5) file
databases3 (e).

An overview of the adapted ISO/IEC 19575-1 general biometric sys-
tem design for speaker verification is given in fig. 35. Data of each
processing step is saved into according databases if not existing and
can be loaded if existing e. g., VAD samples, MFCC features, UBMs, com-
parison scores, and normalised scores. The evaluation of a system is
then performed on the according score database.
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Figure 35: Design of the implemented speaker recognition framework

5.2.2 Application and research modes

For the purpose of using the framework in industry application and
research scenarios, single calculated scores need to be returned as
the framework’s output such that a binary decision can be made by
using thresholds, and evaluation scenario depending score mass com-
putations need to be performed, so that the resulting performance of
a system can be measured by them. Thereby, use of the application
can be seen as a sub-part of the evaluation case where both modes
can be separated by OOP cased interface methods (h, i). Fig. 36

presents a basic class design for the abstract System class: all (im-

2 E. g., by a comma-separated value (CSV) format of the shape: speaker, claim,

score, sample, transcriptions.
3 Hierarchical Data Format, a Matlab-common binary data storage type for large-

scaled data in scientific purposes, see http://www.hdfgroup.org/HDF5 (last viewed
on 09.03.2014).

http://www.hdfgroup.org/HDF5
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portant) parameters representing the configuration of GMM-UBM and
i-vector systems are attributes which are mostly differentiated in their
value by enumerations e. g., the development set (DevSet), the fea-
tures type (VAD+39 MFCCs), and the chosen score normalisation type
(scoreNormType). Public methods like enrol, verify, evaluate are the in-
terface for applications using the framework, where the abstract meth-
ods extract_features, enrol, create_probe, compare, norm depend on the
techniques of pattern recognition, meaning that these methods need
to be implemented by an e. g. inherited i-vector system class which can
distribute implementations in an OOP style to e. g., common libraries
and toolkits.

System

- devSet : enum

- featureType : enum

- ubm_type : enum

- ubm_mixtures : uint

- scoreNormType : enum

- fusion_parameters : float*

- effectPrior : float

- enrolment_db : string

- mode : bool

- name : string*

- subsystems : System*

- subsysNames : string*

- init(devSet : enum, featureType : enum, scoreNormType : enum,

effectPrior : float) : void

+ enrol(identity : string, sampleFiles : string*) : void

- compare(reference : string, sampleFiles : string*) : float*

+ verify(reference : string, sampleFiles : string*) : bool*

+ evaluate(scenario : enum, effectPrior: float) : float*

- extract_features(sample : string) : float**

- enrol(reference : string, features : float**) : void

- create_probe(features : float**) : float*

- compare(templates : float**, probes : float**, mode : bool) : float**

- norm(references : string*, probes : float**,scores : float**,

mode : bool) : float**

Figure 36: Abstract system class diagram

Further, performance evaluations need to comprise parallel process-
ing in order to reduce total run times. Thereby, evaluation processes
can be apportioned, so that same computations are not performed
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twice, such as feature extraction and enrolment processes. Score nor-
malisations can be performed single processed, because score nor-
malisations are performable by matrix operations comprising multi-
ple verification attempts4 (j). Fig. 37 illustrates these processes by
a sequence diagram of the evaluation method from the System class
which preserves the same evaluation procedures among different ver-
ification systems, hence evaluations are well-defined (f). A scenario
enumeration class is mentioned for the purposes of separating eval-
uation scenarios. Further, this class delivers scenario-depending en-
rolment data (identities and samples) and verification samples that
should be compared as probes with the enrolled templates (f). Multi-
processor computers give the opportunity to use parallel-processing
loops in order to achieve overall evaluation in real-time where sys-
tems, e. g. based on i-vectors, may have fast scoring methods, such as
matrix multiplications of template and probe i-vectors.

In research terms, evaluations on different development and evalua-
tion (scenarios) sets might be interesting in order to obtain knowledge
about e. g., scenarios of different context or text- and language-in-
dependent concurrent speaker verifications. Hence, processing data-
bases need to be separated from development sets and evaluation sce-
narios. Thereby, cross-evaluations examining development sets com-
prising English speech applied on German-speech verification sce-
narios can be easily performed if the HDF5 datasets are separately
stored by folder structures that are denoted according to develop-
ment and scenario sets (k). This concept provides the OOP processing
of samples placed in different databases, such that according sample
and meta-data conversions can be performed by preserving the well-
defined manner of the framework (f, g, k). Thus, all requirements
(a-k) can be fulfilled by the explained OOP framework design.

5.2.3 Data organisation

A suitable data organisation can be designed by separating frame-
work resources from evaluations and applications, hence by sepa-
rating development from evaluation data e. g., thruogh the folder
structure. The framework’s development data can further be grouped
by toolkits (a generic hierarchy is denoted by <TOOLKITS>) and the
framework implementation data in terms of classes, experiment set-
ups, math and plotting (visualisation) libraries, and implemented sys-
tems such as GMM-UBM, i-vector, and a Dummy system (classes are
marked by the @ symbol). The evaluation data can be structured by
e. g., development set (DevSet) meta information (e. g. sample labels
and paths), extracted features, created application and subject mod-

4 As a speed-up illustration: multiplying two 1000-element arrays of 500-dimensional
vectors by two for-loops takes 2.3575s while the matrix multiplication takes 0.0392s
(≈ 98%-gain) in Matlab on a Dell Vostro 3550 having an i5 CPU@2.3GHz.
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getEnrolmentData()
identities, samples

extract_features(samples)

enrol(i,features)

znormParameters(i)

enrol(i,samplesi)

reference

save(reference)

load_references(identities)

getVerificationSamples()

extract_features(s)

create_probe(features)

tnormParameters(reference)

probes

compare(t, probes)
scores

save(scores)

load_scores()

norm(references, probes, scores)
normScores

save(normScores)

load_normScores()

calibratedFusion(normScores)

calScores
save(calScores)

load_calScores()

computeMetrics(calScores)

evaluate(challenge)

metrics

researcher:Actor sys:System sub:System challenge:Scenario dbs:Databases

parallel loop

[i:identities]

alt
[ 6 ∃references]

parallel loop

[s:samples]

parallel loop

[t:templates]

alt
[ 6 ∃scores]

alt
[6 ∃normScores]

alt
[ 6 ∃calScores]

Figure 37: Evaluation processing sequence diagram

els, corpora samples, scenario meta information, and scores of system
set-ups on scenarios. Further, meta information on development sets,
scenarios, and scores should be provided in readable and in a bi-



5.2 framework design 73

nary format where *.devSet, *.enrol, *.verify, and *.result shall denote
human-readable CSV formats, and *.hdf5 binary databases compris-
ing the information by hierarchy database structures providing fast
data serialisations. Thereby, model data of e. g., UBMs or i-vector hyper-
parameter sets need to be separated by the underlying development
data and feature types and by the UBM configurations, e. g. number of
components, which are generically denoted by ΛUBM i-vectors hyper-
parameter sets can be denoted by Λi-vector, respectively.

The hierarchy HDF5 database structures of UBM and i-vector hyper-
parameter sets are shown in fig. 38. Where the essential parameters
for UBM and i-vector implementations are stored in an according binary
format by e. g., means ~µ and covariances Σ.

ΛUBM/

UBM path

~µ
Σ
~w

(a) UBM

Λi-vector/

UBM/

total variability matrix

average i-vector ~µi-vector
whitening matrix W

(b) i-vector

Figure 38: HDF5 database structure for hyper-parameter sets

The enrolment databases can be stored according to a system’s
configuration where HDF5 databases can be divided by feature types,
model development sets, and e. g., UBM and i-vector parameters. Each
differently configured system stores its data separately distributed
over the file system: configuration changes determine the path of an
enrolment database and concluding different signal processing pa-
rameters are loaded from other according HDF5 databases such as the
UBM serialisation databases. For the purpose of storing references of
subsystems as well, the hierarchy of the enrolment database needs
to comprise this too e. g., by an <IDENTITY>_<SUBSYSTEM> sub-
hierarchy for storing templates and normalisation parameters that
belong to an identity, see fig. 39. An applicable folder structure for a
speaker verification framework is presented in fig. 40.

System
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Figure 39: HDF5 structure of enrolment databases
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kosi-ivector-framework/

development/

<TOOLKITS>/

framework/

classes/

experiments/

<SETUP>.m

math/

plotting/

systems/

@Dummy/

@GMM_UBM/

@IVector/

evaluation/
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<DevSet>.devSet

<DevSet>.hdf5

features/
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<SCENARIO>/

models/
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<SYSTEM>_<CONFIG>/
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Figure 40: Framework folder structure
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5.3 matlab framework implementation

The introduced design was implemented using Matlab which pro-
vides toolkits, OOP implementations, and has effort advantages on
numerical computations in terms of computation speed. Speaker ver-
ification methods are strongly based on vector and matrix opera-
tions, especially in research terms comprising many verification at-
tempts. Common toolkits of the speaker recognition community are
distributed for Matlab such as the Joint Factor Analysis (JFA) Matlab
Demo [52] and the BOSARIS toolkit [40]. Those are useful for GMM-
UBM, JFA, and i-vector systems implementations, and score post-pro-
cessing in terms of system fusions and forensic and biometric per-
formance evaluations. Further, Matlab’s cluster analysis toolkit pro-
vides the gmdistribution class5 which can be used for processing GMMs.
Matlab also provides methods for serialising and deserialising HDF5

databases. Further, the BOSARIS toolkit refers to HDF5 databases to
store e. g. it’s Score class which was used for the framework imple-
mentation as well.

Other applied tools are taken from speech processing toolkits: Hid-
den Markov Model Toolkit (HTK) [47] is used for MFCC extraction and
UBM training6, rastamat is a Matlab toolkit for extracting and process-
ing speech signals as well and can optionally be used on e. g. ∆-MFCC

computations, and the atip VAD tool which was kindly provided. The
application domains of the toolboxes is illustrated on fig. 41 which
shows the domains with respect to the biometric system components.
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Figure 41: Application domains of Matlab toolboxes

Thereby, the total variability matrices of i-vector systems are trained
by the JFA demo using its estimate_y_and_v(...) method which
trains the JFA eigenvoice V matrix and speaker factors ~y. In i-vector

5 see: http://www.mathworks.de/de/help/stats/gmdistributionclass.html
6 UBM training is also available within Matlab, but appeared to have computational

disadvantages in terms of requested resources.

http://www.mathworks.de/de/help/stats/gmdistributionclass.html
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terms this equals the total variability matrix T and the i-vectors~i. Algo-
rithm 2 briefly shows the implemented procedure of the total variabil-
ity matrix training. Which differs from the eigenvoice training by the
development data treatment: according to the total variability i-vector

approach, see sections 3.3.4, 3.4, each sample is treated as a different
source, so that the Baum-Welch statistics of all samples are stored
separately. In contrast on JFA, the eigenvoices are trained by priorly
grouping the Baum-Welch statistics speaker-wise. Further, JFA con-
strains additional channel-based supervector decomposition which is
compensated by the total variability matrix by the i-vectors approach,
hence the training method call contains zero values 0 and zero ma-
trices 0 where only JFA-depending parameters are passed to the JFA

demo.

Data: Sample set Ω, sample_ids IDΩ
Result: Total variability matrix T, ivector means ~µivecs, whitening

matrix W
~N←− ∅;
~F←− ∅;
foreach ω in Ω do

compute zero and first order Baum-Welch statistics ~Ni, ~Fi;
append ~Ni to ~N;
append ~Fi to ~F;

end
T←− random();
for n← 1 to maxIter = 10 do

T,~i←− estimate_y_and_v(~F, ~N, 0, ~µUBM, ΣUBM, 0, T, 0,

0, 0, 0, IDΩ);
end
~µivecs ←− mean(~i);
covariance eigen-decomposition ~λ = v ′Σ~iv;
W←− ~λ−

1
2v ′;

Algorithm 2: i-vector hyper-parameter set training using the JFA

Matlab demo [52]



6
E VA L U AT I O N

Experiments are performed in order to answer the scientific questions
about the short duration applicability of the i-vector approach, about
the i-vector performance compensations on varying sample durations,
and in order to verify the hypothesis on processing short duration
and duration-variant samples. In this chapter the experimental set-up
will be introduced first, then two evaluation datasets are described,
where one comprises digit pass-phrases and the other one is the cur-
rent NIST i-vector challenge corpus. The experiments are performed on
a short duration and a duration variant scenario, respectively. Exper-
iments on the short-term scenario are performed for the purpose of
getting more familiar with i-vector processing, useful parameters and
models.

6.1 experimental set-up

Firstly, short duration scenario experiments show the performance of
HMM-UBM, GMM-UBM and raw i-vector baseline systems. Then, empha-
sis is put on the effects of common i-vector processing techniques in
terms of the spherical space projection as well as the effects of i-vector

extraction parameters with regards to the amount of UBM components
(64, 128, 256, 512, 1024, 2048), extracted i-vector factors (50, 100, 200,
300, 400, 600), and the maximum training iterations of the total vari-
ability matrix (1, 2, 5, 10) — the speaker community usually refers to
512–2048 UBM components, 400–600 i-vector factors [46, 74, 75, 76, 89],
and a training of 10 iterations [100]. Further, score-level fusions of
baseline and i-vector systems are evaluated, so that the amount of ad-
ditional information gain by using i-vectors can be measured.

The GMM-UBM and i-vector systems are processed by the introduced
framework, see chapter 5: after an energy-based VAD, 39-MFCC fea-
tures are extracted using the Hidden Markov Model Toolkit (HTK),
and feature warping was applied, see chapter 3, which are also used
by Hegenbart [5] and Billeb [6], and the HMM-UBM system was kindly
provided by atip as binary executable.

Experiments on the 2013–14 NIST i-vector challenge are performed by
extending the NIST-supplied baseline system which was distributed
in Python. Further, NIST provided 600-dimensional i-vectors without
samples, but with the according sample durations. Hence, the experi-
ment’s focus is placed on the purpose of increasing the i-vector subject
separability with respect to variant sample durations. Thus, the dura-
tion invariant AS-norm extension (dAS) introduced in section 4.5 was

77
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applied. Experiments on the NIST i-vector challenge are performed of-
fline by a 5-fold cross-validation where on each run one known enrol-
ment sample was randomly excluded from the enrolment processes
and instead used for verifications, the evaluation is then reported by
averaged metrics of 10 cross-validations. Further, the systems were
submitted to the NIST i-vector challenge where preliminary evaluation
results are presented on an online leaderboard which comprises 40%
of all submitted scores where the final NIST evaluation is performed
on the remaining 60% [46].

The evaluation will refer to the metrics summarised in section 2.5,
in particular: EER, FMR100, Hmin

norm, and Cllr as Ctot
llr . These metrics are

chosen for the purpose of appropriately measuring and coherently
comparing the results among the different evaluation scenarios. Fur-
ther, the algorithms are compared by the real-time factor which com-
prise averaged real-time measurements as ×RT =

computation time
sample duration on a

CentOS 6.3 system having an Intel i7-3770 CPU (3.40 GHz) and 32 GB
DDR3-RAM.

6.2 data description

Both data sets, the atip-intern digit corpus and the NIST i-vector corpus,
have differences e. g., in the sample duration (short-term and various),
and in the languages where the digit corpus contains German speech
and the NIST i-vectors corpus contains English speech (> 85%) as well
as Spanish, Russian, Chinese, and Arabic speech1 [46]. The following
sections will describe the evaluation data used on both cross-gender
all-vs.-all scenarios.

6.2.1 Digit speech corpus

The digit speech corpus contains the German digits zero to nine2 spo-
ken by more than 700 male and female subjects recorded by common
telephones. Thereby, averagely 35 samples are created from each sub-
ject where two samples comprise five digits, the other 33 samples
comprise three digits where the order of digits changes between sub-
jects. All sample durations are normalised to 2.5s for three digits and
5s for five digits, respectively. Tab. 4 provides an overview on the sta-
tistical information about the digit development and scenario corpus
subsets with respect to development, calibration and evaluation sub-
sets. The development subset will be used for UBM and total variabil-
ity matrix training, while the calibration subset will be used to deter-

1 The 2013-14 NIST i-vector challenge is based upon the 2012 NIST SRE data which com-
prised the mentioned languages besides the German language [69, 101, 102, 103].

2 In transcriptions of the international phonetic alphabet (IPA): /n U l/ (0), /P AI n
s/ (1), /ts v AI/ (2), /ts v o:/ (2), /d R AI/ (3), /f I: 5/ (4), /f Y n f/ (5), /z E ç s/ (6),
/z I: b n/ (7), /P a x t/ (8), /n O I n/ (9).
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mine optimal system parameters which are then validated using the
evaluation subset. Hence, the baseline systems will be reported for
both calibration and evaluation subsets. Where the calibration subset
comprises 106 genuine and 5 830 impostor scores of 56 subjects, and
the evaluation set contains 572 genuine and 171 028 impostor scores
of 300 subjects. Thus, in terms of the Rule of 3 [26] the lowest reporting
error-rate being significant is approx. 1%, so that the FMR1000 met-
ric has no application, since it is operating at a 0.1% FMR. Hence, the
biometric performance will be reported in terms of EER and FMR100.

Table 4: Statistics of the digit scenario’s development, calibration, and eval-
uation sets

Set Development Calibration Evaluation

Subjects 362 56 300

% female 46.9 37.5 50.6

ø samples/subject 36.0 35.0/2.0 33.1/1.9

ø sample duration 3.2s 2.5s/5.0s 2.5s/5.0s

Language German

Context Digits (0-9)

6.2.2 2013–14 NIST i-vector challenge

In the 2013–14 NIST i-vector challenge samples of prior NIST SREs are
comprised: the i-vectors supplied will be based on a speaker recognition sys-
tem developed by the Johns Hopkins University (JHU) Human Language
Technology Center of Excellence in conjunction with MIT Lincoln Labora-
tory for the 2012 NIST Speaker Recognition Evaluation (SRE) [46], and the
2012 NIST SRE relies on data of the 2004–10 NIST SREs [69]. The joint
MIT and JHU SRE’12 system description refers to 600 dimensional
i-vectors that are based on a 2048-component UBM modelling 60 MFCC

features (19 MFCCs and zero order MFCC as signal energy estimator
with according ∆ and ∆∆), and that are extracted by Bayesian model
adaptation with an additive Gaussian noise model [104]. VAD techniques
are based on energy analyses as described in section 3.1, GMMs, and
multi-frequency band analyses [104]. Further applied speech signal
pre-processing techniques are described in [104]. Thus, compared to
the i-vector extraction on the digit scenario, the SRE’14 i-vectors were
extracted with much more efforts in compensating huge between-
sample variances, i. e. phonetic content (text- and language-indepen-
dence), recording devices (telephone transmitters and microphones),
and environmental noise (clean, in-office, interview).
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However, detailed information about the challenge i-vectors was not
provided by NIST besides the according sample durations, so that com-
parisons to the digit corpus can only roughly be made by analysing
the meta information of prior NIST SREs. Tab. 5 provides an overview
according to the Linguistic Data Consortium (LDC) presentation [105]
on the 2012 NIST SRE workshop and SRE’12 provided meta-information
[101, 102, 103] which was analysed as far as possible; unavailable
information is marked as n/a. Further, information is presented in
subject- and reference-based (ref.) manners.

Table 5: Statistics of the NIST sets from SRE’12 and the i-vector SRE’14 challenge
development and evaluation subsets

Set SRE’12

Evaluation
i-vector SRE’14

Development Evaluation

Subjects (ref.) 414 (1 818) n/a (36 572) n/a (1 306)

% female 60.1 n/a n/a

ø samples/ref. 11.2/72.0 1.0 5.0/7.4

ø sample duration 212.4s/182.2s 40.8s 39.3s/39.4s

Languages (i. e.) English, Russian, Spanish, Chinese, Arabic

Context Interviews & telephone calls

In SRE’12 samples were recorded from 414 subjects of the 976 sub-
jects of SREs’04–’10. These samples are used to create 1 818 references
where on the i-vector challenge 1 306 references are enrolled. Since the
current i-vector SRE’14 is not finished until 2014 April 7th, no informa-
tion is available on the true amount of subjects and gender distribu-
tions during this thesis’ time frame, however a similar proportion can
be assumed since the i-vector challenge strongly relies on the SRE’12.
In contrast to the digit scenario, the NIST evaluation tasks differ com-
pletely: the samples comprise multi-lingual speech (besides German),
the sample durations vary from less than 1s to 300s where the sample
durations are log-normal distributed with an overall duration mean
on 40.3s — on SRE’12 several sub-scenarios were evaluated, so that
sample and duration proportions differ from the i-vector challenge.
Further, the NIST SREs comprise open-content scenarios with natural
speech instead of e. g., pass-phrases or digits. Hence, the NIST SREs

are more difficult for robustly recognising speakers than the close-
content mono-lingual digit scenario. However, in terms of enrolment
sample durations the NIST SREs supply averagely more than 180s of
speech where the digit scenario is bounded by 90s.

The protocols of NIST SREs [35, 46, 69, 95] aim detection costs that
are computed by detection cost functions (DCFs) and that can be in-
terpreted as normalised application-dependent entropy. The i-vector
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challenge refers to the minimum detection cost function (minDCF)
that is according to the NIST protocol [46] computed by:

minDCF = min DCF(t) = min FNMR(t) + 100FMR(t) (92)

which accords to the minimum of the normalised Bayesian error-rate
Hmin
norm on an application-dependent prior of π̃ = 1

101 , see section 2.3.
In contrast, the Cllr metric is often referred to as well by the speaker
recognition community for examining the NIST SRE tasks [25, 41, 74].
Thus, in this thesis the evaluation is also reported on the pattern
matching costs in terms of Hminnorm = minDCF as the application-
dependent forensic entropy and the application-independent Cllr met-
ric.

6.3 short duration speaker verification

This section emphasises on short-term speaker recognition by plac-
ing focus on how applicable i-vectors are for this scenarios and which
additional information the i-vector approach is able to deliver to ap-
proaches that are known to operate well on short duration scenarios
e. g., HMM-UBM systems.

6.3.1 Baseline systems

The baseline approaches comprise HMM-UBM, GMM-UBM, and raw
i-vector systems where raw denotes that no further processing is ap-
plied after the total variability factor analysis. Tab. 6 and fig. 42 com-
pare system performances of systems relying on digit-based HMMs (11

per subject) and digit-independent GMMs having C = {64, 128, 256, 512,
1024, 2048} components. Thereby, the performances are shown for
both, the calibration (cal.) and the evaluation (eva.) subsets, where
overall experiments on the calibration subset reached better perfor-
mances, though the according data is statistically less representative
according to e. g., the Rule of 3 [29]: since only 56 subjects are used on
comparisons, the approximated lowest significant error rate is 5.4%
while on the evaluation subset comprising 300 subjects the lowest sig-
nificant error rate would be ≈ 1.0%. However, system performance
relations observed on the calibration subset accord to the observed
relations on the evaluation subset: strictly proper on EER and Hminnorm,
and roughly on FMR100 and Cllr. Thus, the calibration subset will
be used for examining effects on i-vector-based systems in order to
determine well-configured systems whose performance will then be
validated on the evaluation subset.

On GMM-UBM, systems having 256- up to 1024-component UBMs

reached on the evaluation subset EERs lower than 3%, FMR100 rates
lower than 5% and minimum entropies below 0.5 where UBMs hav-
ing 64 and 128 components seem to result in under-fitting (EER: 4.6%,
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Table 6: Baseline system performances: HMM-UBM and GMM-UBM with re-
spect to UBM components C

Baseline Metrics EER FMR100 Hminnorm Cllr

HMM
Cal. set 0.3% 0.0% 0.055 0.273

Eval. set 0.9% 0.8% 0.172 0.282

GMM C = 64
Cal. set 3.9% 21.6% 0.679 0.600

Eval. set 4.6% 22.4% 0.720 0.593

GMM C = 128
Cal. set 2.5% 6.8% 0.506 0.500

Eval. set 3.4% 10.7% 0.618 0.504

GMM C = 256
Cal. set 0.9% 0.7% 0.262 0.451

Eval. set 2.5% 4.8% 0.422 0.462

GMM C = 512
Cal. set 1.2% 1.4% 0.211 0.428

Eval. set 2.3% 3.8% 0.297 0.439

GMM C = 1024
Cal. set 0.5% 0.0% 0.134 0.400

Eval. set 1.1% 1.2% 0.240 0.411

GMM C = 2048
Cal. set 4.1% 34.1% 0.876 0.497

Eval. set 5.4% 37.8% 0.824 0.530

3.4%; FMR100: 22.4%, 10.7%; Hminnorm: 0.720, 0.618), and 2048 compo-
nents seem to result in over-fitting in terms of the short duration ver-
ification scenario (EER: 5.4%; FMR100: 37.8%; Hminnorm: 0.824). The best
observed GMM-UBM baseline system has 1024 components yielding
1.1% EER, 1.2% FMR100, 0.240 Hminnorm and 0.411 Cllr.

However, the HMM-UBM system outperforms all GMM systems on
all performance metrics by yielding: 0.9% EER, 0.8% FMR100, 0.172

Hminnorm and 0.282 Cllr, which accords to relative achievements towards
the 1024-component GMM-UBM system as: 18%, 33%, 28% and 31%, re-
spectively. Fig. 42 presents the differences in biometric performance
by the sysmtem DET curves with respect to the Rule of 30 [26] bound-
aries of 30 FNMs and FMs (≈ 5%,≈ 0%).

Tab. 7 gives an overview on the baseline (raw) i-vector systems mea-
sured on the calibration subset having 400 factors and the total vari-
ability matrix was trained by 10 iterations, where the UBM component
amounts are compared according to the GMM-UBM systems. On GMM-
UBM systems, 1024 components yielded the lowest error and cost rates
(3.7% EER, 18.8% FMR100, 0.430 Hminnorm, 0.934 Cllr). Similarly, the 1024-
component i-vector system obtained also the lowest error-rates among
the raw i-vector systems, however the most raw i-vector systems per-
form similar to or worse than under/over-fitted GMM-UBM systems,
e. g. EERs greater than 10%.

Further, all Cllr metrics reach a default recogniser’s performance
of Cllr = 1 which is caused by the cosine comparison score that is
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Figure 42: DET comparison of HMM-UBM and GMM-UBM systems on calibra-
tion (dashed) and evaluation (solid) subsets

Table 7: Baseline i-vector performances with respect to UBM components C on
400 factors and 10 training iterations of total variability model on
cal. set

UBM C EER FMR100 Hminnorm Cllr

C = 64 20.0% 65.0% 0.909 0.953

C = 128 17.5% 63.9% 0.834 0.948

C = 256 13.6% 46.6% 0.764 0.946

C = 512 10.1% 35.2% 0.694 0.943

C = 1024 3.7% 18.8% 0.430 0.934

C = 2048 15.8% 42.3% 0.743 0.960

bounded to the ranges of [−1,+1] where the Cllr evaluates Bayesian
thresholds in the ranges of ) − ∞,+∞(. Fig. 43 illustrates the en-
tropies of the 1024-UBM i-vector and GMM-UBM systems as well as of
the HMM-UBM system: the GMM-UBM and HMM-UBM systems are bet-
ter calibrated in terms of Cllr than the i-vector system of which the
comparator is not based on a Bayesian reference-probe comparison.

This effect can be visualised by the normalised entropy among a
feasible range of operating points η ∈ [−10,+10] as shown in fig. 43.
The HMM-UBM and GMM-UBM systems are well-calibrated on a few
operating points close to η = 0 where the raw i-vector-1024 system
also has a small range around η = 0 which is better calibrated than
on all other operating points of the i-vector system, but is still too far
from being well-calibrated as the huge gap between the total and the
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minimum entropy indicates. However, on the Hminnorm operating point
η = NISTη none of the baseline systems is well-calibrated. Further,
approximately until the operating point η = 5 the HMM-UBM causes
the lowest entropy where on η > 5 the GMM-UBM system seems to
gain advantages. In the following, effects on i-vector-based systems
will be examined.
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Figure 43: Normalised entropy of three baseline systems: i-vector, GMM-UBM

with the same 1024-component UBM, and HMM-UBM

6.3.2 Spherical space projection

On duration-variant verification scenarios such as the NIST SREs, the
spherical space projection was reported to yield important gains [7,
45, 82], hence effects of the spherical space projection steps (centering,
whitening and length-normalisation) are analysed. In tab. 8 the re-
sults are summarised in terms of EERs by comparing single centering
and whitening steps with the complete spherical space projection —
the length-normalisation is already included by the cosine score com-
putation, see eq. 82. The i-vector relocation (centering) has low effects
on 64–512 UBM components, meanwhile relative EER gains of 14% and
59% were observed on 1024- and 2048-component UBMs. Thus, the
projection of i-vectors into a same-origin space has more effects on
higher dimensional i-vectors than on high-dimensional3 i-vectors, hence

3 The difference of high and higher dimensional spaces is intentioned as an order of
magnitude between C×D = 64× 39 = 2 496 and C×D = 2048× 39 = 79 872.
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the non-projected i-vectors of higher dimensions contain more sparse
spaces than the high-dimensional i-vectors.

Table 8: Effects of i-vector spherical space projection steps on EER in % with re-
spect to UBM components C on 400 factors and 10 training iterations
of total variability model on cal. set

UBM C Raw Centered Whitening-only Spherical space

C = 64 20.0 19.4 35.2 6.1

C = 128 17.5 18.1 34.7 2.1

C = 256 13.6 13.8 33.3 1.8

C = 512 10.1 9.4 33.4 2.4

C = 1024 3.7 3.2 31.4 1.9

C = 2048 15.8 6.4 34.8 8.0

By applying only the whitening transformation which normalises
variabilities and decorrelates i-vector elements, between-subject dis-
criminant information dimishes, such that EERs of 31–35% can be
observed: discriminant subject information is represented by subject-
depending mean values which comprise the characteristic average
factors of the average subject sub-space offset with respect to an UBM

cluster. Thus, the i-vector centering needs to be considered as an im-
portant processing step to preserve characteristic information before
this information is normalised and decorrelated.

However, by projecting raw i-vectors into a spherical space, huge
performance gains can be observed among all i-vector systems, as all
EERs are lower than 10%. Where the best EERs were observed on 256-
and 1024-component UBMs with 1.8% and 1.9%, respectively. Fig. 44

compares the EERs of the spherical space transformed i-vector systems
to a 5% EER cut-off threshold where systems having EERs greater than
5% shall not be further analysed within this evaluation, as 64- and
2048-component i-vector systems. Compared to the GMM-UBM base-
line systems, 64-/2048-component UBMs seem not to be adequate on
this verification scenario. All further experiments rely on UBMs hav-
ing 128–1024 components and on spherical space projected i-vectors.
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Figure 44: EERs of spherical spaces i-vectors with cut-off at 5% EER
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6.3.3 Effects of i-vector extraction parameters

For the purpose of analysing the effects of i-vector extraction parame-
ters, the previous fix denoted parameters of characteristic factors (400)
and total variability matrix training iterations (10) are evaluated on
the calibration subset. Where the i-vector dimension is varied among
50, 100, 200, 300, 400, and 600 subject factors, and the iteration amount
is varied among 1, 2, 5, and 10 iterations.

Fig. 45 compares the EER performances of different factors among
varying UBM components amounts: the 50-factor systems have EERs

greater than 2% where the vast majority of all other factor-amount
systems comprise EERs lower than 2%. The lowest EERs (1.0%-1.2%)
were observed on systems comprising 200 till 600 factors. Hence, as
the parameter region of interest to investigate on is bounded by 200

and 600 factors.
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Figure 45: Performance of spherical i-vectors by different UBM amount of com-
ponents C and varying factors at 10 training iterations of total
variability matrix

The effect of the factor and iteration parameters is illustrated in
fig. 46 where the fig. 46a–46d show the performance impacts with re-
spect to the UBM component amounts C = 128, 256, 512, 1024 in terms
of the EER. Among all system configurations a low amount of total
variability matrix training iterations and low i-vector dimensions re-
sult in poor performances compared to more adapted and higher-
dimensioned system configurations. Further, 128-component systems
seem to deliver only on a few well-chosen configurations with com-
parable low EERs, while 256- and 1024-component systems seem to
have adequate parameter regions which promise to be more robust
towards evaluation data shifts. The 512-component systems seem to
deliver a larger region for setting up system configurations. Though,
lower EERs on 1024-component systems are observed on variability
training iterations of 1 and 2 which seems that under-fitted variabil-
ity models are preferred among more sparse subject representations,
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while on 512-component systems the intended results of sufficient
variability model adaptations (2–10) and appropriate i-vector dimen-
sions (200–600) can be observed.
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Figure 46: Effects of i-vector factor amounts and total variability matrix train-
ing iterations with respect to UBM component amounts C

Tab. 9 comprises the 16 lowest EERs measured on the calibration
subset by the UBM components (128, 256, 512, 1024), the factors (200,
300, 400, 600), and the according number of variability model adap-
tations. As priorly observed in fig. 44 and fig. 45, the lowest EERs

seem to be yielded on 256- and 1024-component UBMs (0.86%,0.73%),
while on the 128-/512-component UBMs EERs of ≈ 1.00% and ≈ 1.09%
were observed. However, for each number of UBM components the
approximated best configurations are selected (bold marked) for vali-
dating them on the evaluation subset. Here 400 factors seem to be an
appropriate i-vector dimension among the 128–1024 UBM component
amounts.

Since on the 128- and 512-component systems two approximately
similar configurations were observed, both of each are validated, so
that in tab. 10 six system configurations are compared with respect
to their EER, FMR100, Hminnorm, Cllr performances on the calibration
and the evaluation subsets. Over all parameter configurations, the
performance shift among calibration and evaluation subsets is large
as it was also observed on the baseline systems, compare tab. 6 and
fig. 42. In tab. 10, the top-3 evaluation metric values for each metric
are marked boldly, such that at most one value per metric is high-
lighted on one UBM component group. The top-3 i-vector system con-
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Table 9: Effects of i-vector parameters: excerpt of best iterations in terms of
EER on the calibration subset

UBM C Factors Iter. EER

128

200 10 1.00%

300 5 1.31%

400 5 1.01%

600 10 1.14%

256

200 5 1.15%

300 5 0.90%

400 5 0.86%

600 2 1.12%

UBM C Factors Iter. EER

512

200 10 1.35%

300 10 1.09%

400 5 1.10%

600 5 1.24%

1024

200 10 1.69%

300 5 1.17%

400 2 0.73%

600 2 0.84%

figurations on this short duration scenario preserve three different
UBM component amounts, the system configurations and according
performances in particular: 128-components, 400 factors and 5 itera-
tions (2.1% EER, 5.1% FMR100, 0.347 Hminnorm); 256-components, 400

factors, 5 iterations (2.5% EER, 5.9% FMR100, 0.359 Hminnorm); and 512-
components, 300 factors, 10 iterations (2.3% EER, 6.2% FMR100, 0.393

Hminnorm). Hence, the 1024-UBM i-vector system was outperformed by
the other component amounts, where the largest gap between cali-
bration and evaluation subsets is observed on the 1024-component
UBM, too, e. g. 0.7% to 3.2% EER and 0.1% to 9.5% FMR100.

Table 10: Effects of i-vector parameters: comparison calibration and evalua-
tion subsets

UBM C Factors Iter. Set EER FMR100 Hminnorm Cllr

128

200 10

cal. 1.0% 1.0% 0.200 0.890

eva. 2.4% 5.8% 0.373 0.888

400 5
cal. 1.0% 1.0% 0.170 0.909

eva. 2.1% 5.1% 0.347 0.911

256 400 5
cal. 0.9% 0.8% 0.211 0.909

eva. 2.5% 5.9% 0.359 0.910

512

300 10
cal. 1.1% 1.3% 0.300 0.899

eva. 2.3% 6.2% 0.393 0.898

400 5

cal. 1.1% 1.3% 0.277 0.909

eva. 2.5% 6.5% 0.403 0.909

1024 400 2

cal. 0.7% 0.1% 0.266 0.916

eva. 3.2% 9.5% 0.452 0.916
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The biometric performance of the top-3 observed i-vector configu-
rations are visualised in fig. 47 with respect to the calibration and
the evaluation subsets. While the 128-UBM i-vector system significantly
outperformed both other i-vector systems on the calibration subset, all
systems yield roughly the same biometric performance on the evalua-
tion subset, where the 512-UBM system has the highest error-rates and
the 128-/256-UBM systems have in the region of 0.2–1.0% FMR approx-
imately the same error-rates. However, by taking the Rule of 3 and
Rule of 30 boundaries [26] into account only the FNMRs/FMRs slightly
greater than 1% are significant. Thus, in terms of the FMR100 400-
dimensional i-vectors of an 128-components UBM yield the best eval-
uated performance among the i-vector systems without further score
processing on this short-duration scenario.
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Figure 47: DET comparison of the top3-EER i-vector system configurations of
128, 256, 512 UBMs on calibration (dashed) and evaluation (solid)
subsets

First experiments on the intelligent feature selection (IFS) for UBM

creation, see section 3.2, did not confirm additional robustness gains,
neither for GMM-UBM nor for i-vector systems in performance terms
(9%–97% relative-losses in EERs). In short duration and close-context
scenarios UBMs need to preserve all information, by denoting a 5%-
quantile threshold for feature vector distances, UBMs seem to be mod-
elled too sparse for i-vector-based speaker comparisons. Comparison
analysis, see section 2.4, of non-IFS and IFS UBMs considering the de-
velopment data showed that both UBM creations result in about the
same average entropy, but in BIC terms the IFS UBMs outperformed
the non-IFS UBMs by a 54% relative-gain. Hence, IFS UBMs may be
considered as more robust on open-context scenarios where on close-
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context scenarios the acoustical space might be insufficiently mod-
elled when features are taken out before UBM training. Thus, the pre-
sented systems comprising non-IFS UBMs are preferred for the the
following research steps.

i-vector systems are able to process speech data in real-time. Fig. 48

compares efforts for Baum-Welch statistic estimation, total variability
T matrix estimation, (re-) enrolments and verifications by the real-
time factor ×RT. The computation time for estimating Baum-Welch
statistics linearly depends on the number of UBM components C, such
that if an UBM has twice as much components as another, the com-
putation effort doubles as well. Computation efforts of estimating
the T matrix grow exponential with respect to both the amount of
i-vector factors and UBM components. Similar effects can be observed
on enrolment and verification processes. Where the enrolment and
re-enrolment implementations were applied that comparability to ac-
cording processes on the given HMM-UBM system were consistently
preserved. Thus, the computational efforts for enrolments are an or-
der magnitude higher than the computational efforts for verifications.
The highest real-time effort on verification was observed at 4.5% for
an i-vector system comprising 600 factors on a 1024-component UBM4.
Thereby, the computational main part is the estimation of the Baum-
Welch statistics (3.5% ×RT) as well as on all other i-vector system con-
figurations, where other i-vector processing comprise fast matrix and
vector computations such as the i-vector extraction itself and the spher-
ical space projection as described in section 3.4.

6.3.4 Comparison of systems, system calibrations and fusions

In comparison to the HMM-UBM and GMM-UBM baseline systems, the
i-vector systems perform on enrolment and on verification processes in
real-time: at most 16.2% and 3.3%×RT, respectively. Where GMM-UBM

systems comprise more than ten times of the computational effort
on enrolments and on verifications than the real-time performances
of i-vector systems relying on according UBMs which results due to
the different comparator designs5: on GMM-UBM systems Baum-Welch
statistics need to be computed twice, one time on the reference GMM

and another time on the UBM, while i-vector systems only use the UBM

Baum-Welch statistics to fast extract i-vectors which can be compared
by the dot product. The real-time performance of the given HMM-
UBM system can be located for enrolment and verification processes
between the GMM-UBM systems of 256- and 512-component UBMs.

4 Where a real-time performance peak on a 300-factor 256-component i-vector system
may be the result from averaging computation durations of parallel processed veri-
fication attempts, such that this peak may be considered as an outlier.

5 GMM-UBM scores are computed by Matlab’s gmdistribution class, while the i-vector

Baum-Welch statistics are computed by the JFA Matlab demo.
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Figure 48: Computation effort comparison of i-vector processing in terms of
real-time performance

However, the i-vector systems yield the lowest computational efforts
in terms of real-time processing time.

For the purpose of examining the calibration of speaker verification
systems, scores of the calibration subset were used as described in sec-
tion 3.4.3 to train linear score transformation matrices which are ap-
plied for system calibrations and score-level fusions on the evaluation
subset scores. Tab. 12 compares the calibrated HMM-UBM, GMM-UBM,
and i-vector systems by EER, FMR100, Hminnorm and Cllr where calibra-
tion was applied on the calibration subset scores (themselves) and on
the evaluation subset scores in order to demonstrate the expected best
case and evaluation Cllr values among the systems. Due to calibration,
the HMM-UBM systems entropy could be reduced from Cllr = 0.282
to Cllr = 0.054, further on the GMM-1024 from 0.411 to 0.060, and
on the i-vector systems from 0.888, 0.910, 0.898 to 0.107, 0.103, 0.101,
respectively. On the short duration scenario, the baseline HMM-UBM

and GMM-UBM systems perform better for all evaluation metrics than
the i-vector systems: e. g. in terms of Hminnorm, the i-vector systems yield
costs between 0.347 and 0.393 where the 2014 NIST i-vector baseline
system is reported to have a 0.386 Hminnorm on a more complex evalua-
tion scenario (e. g., duration-variant, multi-lingual, natural language)
and the HMM-/GMM-UBM systems yielded costs of 0.172 and 0.240,
respectively.

The HMM models are very close-constrained towards the phonetic
content and hence, more robust pattern matches can be expected
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Table 11: Real-time comparison of the baseline HMM-/GMM-UBM and i-vector

systems

System Enrolment
(≈ 33× 2.5s/subject)

Verification
(5s/attempt)

HMM 206.2% 5.5%

GMM-128 61.6% 4.2%

GMM-256 123.3% 5.2%

GMM-512 243.2% 7.2%

GMM-1024 500.2% 10.9%

i-vector-128/400 6.1% 3.2%

i-vector-256/400 9.9% 3.1%

i-vector-512/300 16.2% 3.3%

on same-constituted speech data, while the i-vector systems are more
designed for estimating characteristic subject subspaces in text- and
language-independent scenarios rather than modelling e. g., phrases
or digits. Further, i-vector and GMM-UBM references were created by a
large enrolment collection (more than 30 samples/subject with more
than 75s of speech), but on verification the GMM-UBM approach esti-
mates to which model the probe data fits most. In contrast on the
i-vector approach, template-alike probe i-vectors are extracted which
are then compared to higher-sufficiently estimated template i-vectors

in terms of the sample durations, e. g. > 75s summed duration of
all template samples compared to 5s probe sample duration. This
duration-mismatch seems to increase noise on the i-vector approach. In
comparison to the baseline raw i-vector systems (EERs 3.7%–20.0% and
Cllr 0.934–0.960), the examined i-vector processing and configurations
yield appropriate and calibrated performances (e. g. EERs 2.1%–2.5%
and Cllr <0.101–0.107).

Thus, the hypothesis on short-term scenarios, see section 4.1, is
confirmed: by applying appropriate modelling techniques on close-
context scenarios, which are created for the purpose only to fit to
the close-context patterns, more verification robustness can be ob-
tained than by applying approaches which aim to perform robust
among various phonetic contents. However, the question whether the
i-vector approach is applicable on short duration verification scenarios
is positively confirmed: the three resulting calibrated i-vector systems
are applicable, because the observed error rates are lower than the
preliminary set bounds : EER< 5% (2.1–2.5%), FMR100 < 10% (5.1–
6.2%), Hminnorm < 0.554 (0.347–0.393), Cllr < 0.333 (0.101–0.107), and
×RT < 1.05×RTHMM ≈ 5.78% (3.1–3.3%).

For the purpose of examining the question whether i-vector systems
contribute new information towards the baseline systems, fusions of
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Table 12: System calibrations of HMM-UBM, GMM-UBM, and i-vector systems

System Calibrated EER FMR100 Hminnorm Cllr

HMM
cal. 0.3% 0.0% 0.055 0.014

eva. 0.9% 0.8% 0.172 0.054

GMM-1024

cal. 0.5% 0.0% 0.134 0.025

eva. 1.1% 1.2 % 0.240 0.060

i-vector-128

cal. 1.0% 1.0% 0.170 0.056

eva. 2.1% 5.1% 0.347 0.107

i-vector-256

cal. 0.9% 0.8% 0.211 0.049

eva. 2.5% 5.9% 0.359 0.103

i-vector-512

cal. 1.1% 1.3% 0.300 0.057

eva. 2.3% 6.2% 0.393 0.101

i-vector systems and the HMM-UBM system using the calibration sub-
set are analysed where the 1024-component GMM-UBM system is not
taken into account due to its exhaustively computational efforts on
enrolments and verifications which are significantly outperformed by
the HMM-UBM and i-vector real-time performances. Tab. 13 compares
the performance of i-vector-fused systems and the fusion of the HMM-
UBM system with one of each of the i-vector systems. All fusions are
performed by linear logistic regression using the calibration subset
for applying calibrations and fusions on the evaluation subset, see
section 3.4.3.

Table 13: System fusions of i-vector and HMM-UBM systems

Systems EER FMR100 Hminnorm Cllr

i-vector-128+256 1.9% 3.3% 0.310 0.082

i-vector-128+512 1.6% 3.6% 0.312 0.080

i-vector-256+512 1.7% 3.8% 0.321 0.077

i-vector-128+256+512 1.7% 3.2% 0.295 0.075

HMM+i-vector-128 0.4% 0.1% 0.108 0.439

HMM+i-vector-256 0.4% 0.1% 0.110 0.028

HMM+i-vector-512 0.4% 0.1% 0.110 0.028

By fusing i-vector systems the verification accuracy can be increased
in terms of all reported evaluation metrics, such that in terms of
FMR100, Hminnorm and Cllr the fusion of all three i-vector systems, de-
noted as i-vector+128+256+512, yields the lowest error-rates, costs and
entropy (3.2%, 0.295, 0.075) on an 1.7% EER as an i-vector-only sys-
tem, which accords to relative-gains of 32% compared with the best
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observed i-vector system on the calibration subset which has a 256-
component UBM. Further, all fusions of single i-vector systems with
the HMM-UBM system yield the best observed performances on the
evaluation subset in terms of EER, FMR100 and Hminnorm. Fig. 49 illus-
trates the biometric performances of the HMM-UBM system, the i-vector-
256 system, and the system fusions between the three i-vector systems
and of the HMM-UBM system with the i-vector-256 system, denoted as
HMM+i-vector-256.
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Figure 49: DET comparison of HMM-UBM, i-vector-256 systems and fusions

In terms of Cllr, the fusion systems comprising i-vector UBMs with
more than 128 components also yield significant gains by entropies
about Cllr = 0.028 which outperforms the HMM-UBM having Cllr =

0.054. Thus, i-vector systems having sufficiently fitted UBMs are able to
augment information to algorithms that are well-fitted on this short-
term scenario, namely the HMM-UBM approach, by a 48% rate: i-vector-
256 and i-vector-512 systems contribute new information to the HMM-
UBM baseline system6.

Fig. 50 compares the normalised entropies among Bayesian thresh-
olds within a range of η ∈ [−10,+10] according to the DET-compared
systems in fig. 49. All systems are well-calibrated on the evaluation
operating point π̃ = 1

101 (NISTη ≈ 4.6). Further, all systems obtain
the lowest entropies on a η = 0 representing the intentioned EER-
operating point of equal FM and FNM costs. However, linear score
calibration is able to cause entropies to be greater than the default
entropy on operating points with large distances to the calibration’s
operating point: e. g. on η ≈ −5 all systems have entropy outliers

6 Both fused systems (256/512) differ only slightly within the metrics e. g., on EERs:
0.38% vs. 0.41%.
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Figure 50: Entropy evaluation

as well as on η � 5, though these operating points also are outside
of the significant application range which is bounded by the Rule of
30. According to the 30 FMs and FNMs boundaries, the HMM+i-vector-
256 fused system’s operating point approximately is within the range
where both genuine and impostor scores are significantly distributed.
Thereby, the HMM+i-vector-256 fused system has the lowest distance
between both boundaries, such that genuine and impostor scores are
separated more than within the other systems, because until the 30

FNMs boundary only 30 genuine scores are distributed among the im-
postor scores, which causes only small entropy and provides high
biometric performances. Further, the total and minimum entropies
are lower within this region than on the other systems, meaning that
there are less entropy penalties due to e. g., weighted error-rate sums
such as the Hminnorm or likewise minDCF described in eq. 92, hence
there also are less scores causing mismatches that are profoundly pe-
nalised e. g., by a factor of 100 on FMs.

Comparing all four systems on all application operating-points, the
HMM-UBM and i-vector-256 system have application-depending pros
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and cons where the i-vector-256 system gains advantages on operating
points of η� +5which can be increased by a fusion of all three i-vector

systems. The most robust system can be established by a fusion of the
HMM-UBM and the i-vector-256 systems which is a single-sample and
multi-algorithm fusion. Further, according to tab. 13 the i-vector-512

system can be considered as a reliable and robust biometric verifica-
tion system on this short duration scenario as well.

6.4 compensating duration mismatches

In contrast to short duration scenarios, this section examines a dura-
tion-variant scenario which was provided by the 2013–14 NIST i-vector

challenge. Within the speaker recognition community the i-vector ap-
proach was shown to perform robust on long duration samples while
on short duration samples performance break-downs were observed,
see section 4.3. This section aims to find out if these performance mis-
matches are compensable on the score-level domain. Therefore, the
provided development set is analysed first, and afterwards the in sec-
tion 4.5 proposed duration-invariant AS-norm extension is evaluated
on the NIST challenge which also aims to validate the second hypoth-
esis of this thesis which is proposed in section 4.4.

6.4.1 Data analysis

NIST provided 600 dimensional i-vectors, and their according sample
durations which are log-normal distributed as shown in fig. 51. Most
of the development sample durations are in the 20–40 second range,
i. e. these samples are influencing development set based i-vector pro-
cessing such as the spherical space projection.
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Figure 51: Log-normal distributed sample durations of development set
data with respect to i-vector sufficiency classes
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The vast majority of development samples are located in the qual-
ity classes of Λfull (34.7%), Λ40 (31.1%), and Λ20 (23.1%), then: Λ10

(9.0%), andΛ5 (2.1%), for specifications of the duration classes see sec-
tion 4.5. Intentionally, all i-vectors have been centralised to the origin
by mean-subtraction during the preparation of the baseline system,
but an unpaired Student t-test of independence showed that i-vector

elements have significantly different mean-values compared between
all development set i-vectors and with respect to each sufficiency class.
Tab. 14 compares the amount of significantly independent i-vector ele-
ments according to their sample durations assuming equal variance7.
Once the spherical space projection has been applied, Λ40 i-vectors ex-

Table 14: Student t-test of independent i-vector elements with respect to suffi-
ciency classes

Development set all Λfull Λ40 Λ20 Λ10

Λ5 84 141 91 66 44

Λ10 142 230 140 70

Λ20 132 246 118

Λ40 35 180

Λfull 172

hibit the lowest significant offset to the space origin by having the
second most impact on both i-vector processing due to their represen-
tative amount. Further, the most-sufficient i-vectors have the greatest
gap compared to all development set i-vectors and to each sufficiency
class with at least 140/600 significant different mean positions. Hence,
within the subspace of Λ40 i-vectors seem to be between the subspaces
of high-insufficient and high-sufficient i-vectors. An opposite effect
could be observed on short-duration samples, where the according
i-vectors have larger mean-differences to i-vectors of more than 20 sec-
onds than to i-vectors of comparable short duration samples (less than
20 seconds). This effect may be caused due to high variability of insuf-
ficient estimated i-vectors of short-duration samples, i. e. i-vectors of less
than 20 second samples are distributed in subspaces that are closer to
themselves than to more-sufficiently estimated i-vectors.

That is, offset vectors can be assumed for each sufficiency group,
which effects the cosine score values due to angle changes between
i-vectors8. These facts underline the need for compensating scoring
statistics with respect to sample durations. Hence, first investigations
were performed by applying Fisher’s LDA, see section 2.4, in order
determine the most characteristic factors among the development

7 Results of an unpaired Student t-test assuming unequal variances yielded negligible
differences in the results.

8 Which actually is additive noise that should be well-compensable by, e. g. G-PLDA
scoring [25, 88].
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i-vectors. However, first (insignificant) gains could be yielded by apply-
ing the LDA transformation according to the probe sample duration.
Generalised dimension reduction experiments increased the error-
rates instead of lowering them, hence duration-dependant treatments
seem to be necessary. Generalised dimension reduction experiments
increased the error-rates instead of lowering them, hence duration-
dependant treatments seem to be necessary. Thus, this thesis research
emphasis is placed on the duration invariant AS-norm (dAS) for the
purpose of compensating i-vector subspace mismatches due to acous-
tic holes as described in section 4.5.

6.4.2 Duration invariant AS-norm

Focusing on the baseline system the highest performance loss in en-
tropy terms of Hmin

norm is observed for low-durational samples, see
tab. 15. As can be seen, Λ5 i-vectors yielded the highest entropy with
0.932 which is very close to a random recognisers performance of
Hdefault

norm = 1. i-vectors stemming from the class with the longest sample
duration yielded the best observed Hmin

norm, i. e. 0.219.

Table 15: Duration group performances: avg. Hmin
norm

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.932 0.721 0.520 0.327 0.219

AS-norm 0.824 0.592 0.434 0.288 0.236

dAS-norm 0.646 0.494 0.413 0.303 0.279

However, on all other quality classes of insufficient i-vectors both AS-
normalisations yield significant gains where the dAS-norm outper-
forms both other systems on samples shorter than 20 seconds. On 20–
40 second samples both normalisations could outperform the base-
line approach, where AS-norm without duration-sensitive extension
achieved the best Hmin

norm for Λ40 i-vectors. Hence, AS-norm is necessary
on insufficiently estimated i-vectors, and the proposed duration-based
extension can yield up to 19.1% more relative-gain than the standard
AS-norm. In terms of biometric recognition performance both AS-
norm approaches outperform the baseline as well, see tab. 16.

Table 16: Duration group performances: avg. EER

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 8.74 3.92 2.68 1.10 0.83

AS-norm 10.51 4.35 2.32 1.04 0.71

dAS-norm 5.63 3.35 2.32 1.09 1.05
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Again, the proposed dAS-norm yields significant gains on samples
shorter than 20 seconds on which a performance break-down for the
standard AS-norm can be observed. However, on higher-sufficient
i-vectors the standard AS-norm outperforms both other systems, which
could be caused by the non-duration-invariance of the Λfull i-vectors.
EER and Hmin

norm performance comparisons among quality classes Q

are shown in fig. 52.
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Figure 52: Biometric performance of i-vector sufficency classas

Across the entire set of classes the proposed duration-based AS-
norm outperforms both other systems, see tab. 17. In summary, the
proposed dAS-norm yields a 19.5% relative-gain in EER, a 32.6% rel-
ative-gain in FMR100, and a 15.0% relative-gain in Hmin

norm compared
to the baseline system on the cross-validation. Further, the dAS-norm
significantly outperforms the standard AS-norm which can also be
seen in fig. 53.

The results were approved by the preliminary evaluation of the
2013–14 NIST i-vector challenge, where the application of the standard
AS-norm resulted in a 14.2% relative-gain, and the duration-invariant
extension resulted in a 19.2% relative-gain in Hmin

norm.
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Table 17: System performances: avg. EER, FMR100, Hmin
norm

System EER FMR100 Hmin
norm Challenge9

Baseline 2.56 5.15 0.428 0.386

AS-norm 2.49 4.48 0.378 0.331

dAS-norm 2.06 3.47 0.364 0.312

Fig. 53 compares the best cross-validation systems according to the
minimum entropy within a DET diagram. The dAS-norm improves
the biometric performance of the baseline system at all operating
points, while the standard AS-norm mainly yields gains in high-se-
cure regions, i. e. operating points at low FMRs. In this regions both
AS-normalisations exhibit equal recognition accuracy.

0.10.2 0.5 1 2 5 10 20 30 40

0.1
0.2

0.5
1

2

5

10

20

30

40

FMR (in %)

FN
M

R
(i

n
%

)

Baseline
Standard AS
Proposed dAS
30 FNMs

Figure 53: Systems DET: best systems from 10 cross-validations according to
their minimum entropy.

Hence, the proposed duration-invariant AS-norm extension is ap-
plicable to a larger range of scenarios compared to the standard AS-
norm. While the dAS-norm only obtains slightly lower error-rates
on Hmin

norm-operating points compared to the standard AS-norm, more
advantages of the duration-invariant treatment are observed within
wide-application entropy evaluations.

6.4.3 Wide-application entropy analyses

Tab. 18 compares the total Cllr of the three systems over all scores, and
among each quality class. On Λ5 i-vectors the baseline and the stan-
dard AS-norm perform similar to or worse than a random recogniser,
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and on samples having more than 5 seconds the standard AS-norm
significantly outperforms the baseline system. The lowest application-
independent entropy on high-sufficient i-vectors was measured for the
standard AS-norm with Cllr = 0.05, representing a very low cost of
the LLR-scores. However, on sample durations lower than 40 seconds
the dAS-norm outperforms both other approaches by yielding a max-
imum LLR cost of Cllr = 0.35 on high-insufficient Λ5 i-vectors. Over-
all the suggested AS-norm extension exhibits the lowest application-
independent entropy by yielding relative-gains of 88.8% and 41.2%,
respectively. Fig. 54 illustrates the Cllr gains with which emphasis is

Table 18: Average entropy comparison: all scores & duration-groups

System all Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.89 0.95 0.93 0.92 0.89 0.86

AS-norm 0.17 1.18 0.41 0.18 0.08 0.05

dAS-norm 0.10 0.35 0.20 0.11 0.07 0.07

also placed on robustness, i. e. systems which do not require score-
calibration, because total and minimum entropy are equal on well-
calibrated systems. Due to the cosine scoring all scores of the base-
line system lie within the range [−1,+1], hence, the lowest entropy.
The smallest difference between total and minimum entropy was ob-
served on η ≈ 0, on any other operating point the baseline system
is effected by huge mis-calibrations. Calibration-improvements were
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Figure 54: Entropy comparison of the NIST baseline and submitted systems

gained by the standard AS-norm, which delivers adequate calibra-
tion for different application-points. However, the suggested dura-
tion-invariant score normalisation yields well-calibrated scores on the
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vast majority of application-points, which have significant error-rates.
That is, the proposed duration-invariant enables an enhanced statis-
tical treatment of quality classes, which is approved by a very low
overall entropy emission in terms of Cllr.

Hence, duration-based performance mismatches could be compen-
sated on score-level domain by simulating i-vector subspace reloca-
tions after i-vector comparisons by taking further knowledge into ac-
count about i-vectors of similar quality shape e. g., in terms of the
template and probe sample durations. Thus, the stated hypothesis
on duration-invariant scenarios could be confirmed by the robust-
ness gains in terms of biometric performances, the NIST evaluation
metric minDCF or likewise Hmin

norm, the Cllr metric as the application-
independent entropy, and wide-application ranged entropy analyses.

6.5 summary and discussion

The evaluations were performed on short duration and duration-in-
variant scenarios. Thereby, the short duration scenario comprised Ger-
man digits with sample durations under 5s while the duration-invari-
ant NIST scenario relies on multi-lingual speech data from interviews
and telephone calls where sample durations vary from about 1s to
300s. Experimental investigations were performed with the purposes
to find out whether the i-vector approach is applicable on short du-
ration scenarios, if new information can be gained by using i-vector

systems together with well-established approaches in short duration
speaker recognition, and whether there are (simple) methods to in-
crease the robustness of i-vector systems on duration-variant applica-
tion scenarios.

Starting from HMM-UBM, GMM-UBM, and raw i-vector baseline sys-
tems, the effects of i-vector processing steps e. g., spherical space pro-
jection, and parameter configurations, e. g. amounts of UBM compo-
nents and characteristic factors, were analysed on short duration sce-
narios. By examining proper system configurations using a calibra-
tion subset, three i-vector systems could be established and evaluated
on a calibration-distinct evaluation subset where all three reported
i-vector systems yielded acceptable performances, especially in terms
of first implementation steps on i-vector systems. In adequate real-time
comparisons to the baseline systems, the i-vector systems significantly
outperformed the HMM-UBM and GMM-UBM systems on both, enrol-
ment and verification processes. However, in this short duration sce-
nario, where e. g. the HMM-UBM approach models the close-content
data very precisely, the i-vector approach models more general ob-
servations in terms of sample-depending UBM cluster offsets from
which subject-characteristic factors are extracted. Thereby, the sce-
nario’s samples are also strongly influenced by the phonetic content
of ten digits which is a close-content set, thus extracted i-vectors seem
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to suffer from these effects while e. g. the HMM-UBM approach takes
advantage of these. Hence, the hypothesis on short duration scenarios
(section 4.2) could be confirmed which states that on short duration
scenarios similar-content and -quality analyses, e. g. by digit-based
HMMs, will achieve more robustness than more generalised compar-
isons as by i-vectors.

For the purpose of evaluating the i-vector information gain towards
known approaches, score-level system fusions have been applied us-
ing information of the calibration subset. Thereby, a fusion of the
three i-vector systems outperformed those, and further, by fusing sin-
gle i-vector systems with the HMM-UBM system the best performances
could be observed in terms of EER, FMR100, Hmin

norm, and Cllr. By out-
performing the HMM-UBM system in terms of Cllr (overall entropy),
the fusion systems proved that the i-vector systems deliver new infor-
mation to existing systems, such that all examined metrics could be
improved by 36%–88% relative-gains. The fusions of the HMM-UBM

system with either i-vector systems of a 256-component UBM on 400

factors and a 512-component UBM on 300 factors obtained similar re-
sults, in particular: 0.4% EER, 0.1% FMR100, 0.110 Hmin

norm, and 0.028

Cllr. It is important to note that this sort of fusion is a single-sample
and multi-algorithm fusion, where all comparison algorithms need
to compensate the same noise effects of one sample and cannot take
information of re-captured samples into account for achieving higher
robustness.

Further, i-vectors of duration-variant scenarios were examined in or-
der to analyse compensation techniques for quality-mismatch-based
performance break-downs. Analyses on the development set data
from the multi-lingual 2013–14 NIST i-vector challenge confirmed that
i-vector subspaces vary depending on the sample duration as a qual-
ity metric. Hence, a score-level domain compensation approach was
examined that was motivated by the well-established AS-norm and
extended by the motivation of the hypothesis described in section 4.4
which states that sample comparisons need to transform features of
quality-differing samples into a common space. By establishing the
duration-invariant AS-norm extension significant gains to the NIST

baseline system and the standard AS-norm can be observed in terms
of EER, FMR100, Hmin

norm, and Cllr overall samples. On low duration
samples the dAS-norm also outperforms the standard AS-norm. In
contrast, the standard AS-norm seems to have advantages on higher
duration samples. However, by comparing the three systems on a
wide-application range, the duration compensation method, that is
proposed in this thesis, outperforms the baseline and standard AS-
norm systems in terms of well-calibration. Hence, additional score
calibration sets and transformation matrices as applied in the short
duration scenario evaluation might on duration-invariant score nor-
malisations not be as necessary as on short duration applications.



7
C O N C L U S I O N S A N D F U T U R E P E R S P E C T I V E S

This thesis examined speaker verification using i-vectors on short dura-
tion and duration-variant scenarios. The focus was put on analysing
the behaviour of i-vector-based systems in short duration scenarios in
comparison with well-known approaches and on compensating per-
formance mismatches on duration-variant scenarios. A basic i-vector

system was constructed, proven to be applicable, and shown to con-
tribute new information towards existing speaker verification sys-
tems, such that significant performance and robustness gains were
yielded. For reproducibility purposes an ISO-based verification frame-
work design was created and implemented. Thus, the presented eval-
uation results are sound. Further, the robustness of i-vector systems
was increased by a duration-invariant score normalisation that was
proven on an international evaluation of the NIST.

Hence, i-vector systems are applicable within industry scenarios e. g.,
randomised pass-phrase-based verification scenarios on contact cen-
ters, and also for scenarios of unknown sample durations such as con-
tinuous speaker verification on mobile devices. Further, i-vector pro-
cessing can be used on forensic applications e. g., separating speak-
ers among samples. However, other applications of HMM- and GMM-
based patter recognition such as medical investigations of the human
heart rate or image segmentations might also take advantages of the
i-vector approach by training the total variability matrix more with
respect to other contents rather than to biometric subjects.

Future investigations may examine Bayesian scoring methods such
as the Gaussian probabilistic LDA (G-PLDA) that was motivated by
the face recognition community for the purpose of comparing tem-
plates and probes under the assumption of noise effects which is also
well-established within the speaker recognition community. Since the
recognition robustness relies on the UBM quality, other UBM types
might be evaluated where dimension decoupled GMMs promise gains
in terms of the BIC. Other researches may consider to apply speech
signal features which lately became very popular among the speaker
recognition community1 for e. g. feature-level fusions such as i-vector

concatenations. Further, for the purpose of providing reproducibility
among all biometric fields in research and industry terms, an open-
source framework extending the proposed speaker verification frame-
work will be implemented in a free usable language which aims at
maintainability and fast computations as well.

1 I. e.: perceptual linear prediction (PLP) features, mean Hilbert envelope coefficients
(MHECs), power normalised cepstral coefficients (PNCCs), phone LLRs (PLLRs), and
prosodic polynomial contours (ProsPols).
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A
N O TAT I O N S

The speaker recognition community uses many terms describing the
same objects. Further, there are conflicts with other communities like
the standardised Biometric community. In the following the notations
used in this thesis are described and relations to the ISO-harmonised
biometric vocabulary [21], and to the community notation are re-
ferred to as well.

General notations

Notation Description Source

a Scalar

~a, ~A Vector

A Matrix

N Number of

n Control variable

R Rank

µ Mean

σ2,Σ Variance, covariance matrix

P A-posteriori probability

p A-priori probability

ld Logarithmus dualis ld, or binary loga-
rithm lb

H Entropy

χ Subject/speaker (specific)

Data sets

Notation Description Source

DevSet Development set [46]: data set used to
create an application database [21]

EnrolSet Enrolment set: data set used to create
an enrolment database [21] by using
speaker-specific meta information and
speaker samples

VerifySet Verification set: data set used to mea-
sure the biometric performance [21]
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Data sets

Notation Description Source

Φ/φ Scenario set: combination of
enrolment and verification sets

Normalisation sets

Notation Description Source

Z Data set of system default impostors
to simulate attacks on a speakers refer-
ence: model-specific parameters of im-
postor score distributions can be deter-
mined and used for later on normalisa-
tion [12, 106]

T Data set of system default impostors
which is used to determine sample
score distribution parameters during
verifications (tests) to normalise the
probe [12, 106]

Hypotheses

Notation Description Source

H Hypothesis whether the claim of an
presented individual is genuine or not

H0 Null-hypothesis: genuine (target trial,
claimed identity equals speaker iden-
tity)

[85, 106]

HA Alternative hypothesis: impostor,
non-target trial [95], claimed identity
not equals speaker identity

Samples & Features

Notation Description Source

Ω/ω Sample set/sample

VAD Voice Activity Detection, speech activ-
ity detection, utterance detection

[12]

MFCC Mel-frequency-cepstral coefficient [12, 106]

Ψ/~ψ Feature matrix/vector

D Dimension of ~ψ [44]
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Models

Notation Description Source

Λ Hyper-parameter set of JFA/i-vector
modell

[23]

λ Speaker model [12, 44]

GMM-UBM

Notation Description Source

GMM Gaussian-mixture-model consisting of
components of D-dimensional Gaus-
sian distributions

[12, 44,
106]

UBM Universal background model [12, 44,
106]

~µ Mean supervector
~Σ Covariance supervector

C/c GMM’s components [50]

wc Component’s weight,
∑
c∈Cwc = 1 [44]

N Gaussian distribution

Pc(~ψ) Posteriori probability of the alignment
of ~ψ to a component c

[44]

Baum-Welch statistics

Notation Description Source
~N Zero order statistics, ~Nc(~ψ) = Pc(~ψ) [23, 50, 81]

F First order statistics, Fc(~ψ) = Pc(~ψ)~ψ [23, 50, 81]

S Second order statistics,
Sc(~ψ) = diag

(
Pc(~ψ)~ψ~ψ ′

) [23, 50, 81]

~F(ω) Centered first order statistics [23, 50, 81]
~S(ω) Centered second order statistics [23, 50, 81]

Joint Factor Analysis

Notation Description Source

JFA Joint Factor Analysis,
Λ = (~µUBM, V, U, D,Σ),
~µω,χ = ~µUBM + V~y(χ) + U~x(ω)

+ D~z(λχ)

[23, 50, 81]
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Joint Factor Analysis

Notation Description Source

V Eigenvoice matrix [23, 50, 81]

U Eigenchannel matrix [23, 50, 81]

D Residual matrix [23, 50, 81]

~y(χ) Speaker factors [23, 50, 81]

~x(ω) Channel factors [23, 50, 81]

~z(λχ) Residual factors [23, 50, 81]

i-vector

Notation Description Source

i-vector Identity-vector,
Λ = (~µUBM, T,Σ),
~µω,χ = ~µUBM + T~i(χ)

[7]

T Total variability matrix [7]
~i(χ) Total factors, identity-vector,

denoted as w in [7]

LDA Linear discriminant analysis for dimen-
sion reduction (Fisher’s LDA)

[7]

PLDA Probabilistic LDA [24]

Scores

Notation Symbol Source

S Score [31]

LLR Log-likelihood ratio [40, 95]

t Threshold [40]

Performance

Notation Symbol Source

E Evidence measure/recognition system [18, 40]

×RT Real-time factor

FTC Failure-to-capture [26]

FTA Failure-to-acquire
FTA = FTC + (1− FTC)Nfailed acquisitions

Nacquisitions

[26]

FTE Failure-to-enrol [26]
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Performance

Notation Symbol Source

FMR False match rate, type I error, false pos-
itive rate, matched impostors

[26]

FNMR False non-match rate, type II error,
false negative rate, non-matched gen-
uines

[26]

FAR False acceptance rate,
false alarm probability in [40, 95],
FAR = (1− FTA)FMR

[26]

FRR False rejection rate,
miss probability in [40, 95],
FRR = FTA + (1− FTA)FNMR

[26]

EER Equal error rate [31]

HTER Half total error rate on a certain t e. g.,
HTER =

FNMR(tDevSet,EER)+FMR(tDevSet,EER)
2

[107]

FMR100 FNMR at FMR = 1%

AUC Area under curve

CFM Cost of a false match, Cfa in [40, 95]

CFNM Cost of a false non-match,
Cmiss in [40, 95]

π Genuine probability,
logitπ = log π

1−π , Ptar in [95]
[40]

π̃ Effective prior, π̃ = πCFNM
πCFNM+(1−π)CFM

[40]

DCF Detection cost function,
DCF(t) = πCFNMFNMR(t)

+ (1− π)CFMFMR(t)

[40, 95]

Herr Empirical Bayes error-rate (entropy),
Herr(π̃) = π̃FNMR(− logit π̃)

+ (1− π̃)FMR(− logit π̃)

[40]

Hnorm Normalised entropy,
Hnorm = Herr

min(π̃,1−π̃) = DCFnorm

[40]

η Bayesian threshold,
η = − logit π̃ = log CFM

CFNM
− logitπ

[40, 95]

actDCF Actual (normalised) DCF at t = η [40, 95]

minDCF Minimum (normalised) DCF,
threshold-independent

[40, 95]

Cllr Goodness of LLRs, by integrating out
all operating points π̃ of Herr

[40, 95]



B
Q U A L I T Y C L A S S I F I C AT I O N O F B I O M E T R I C
C H A R A C T E R I S T I C S

Jain et al. [1] refer to seven measurement requirements to qualify
whether or not a physical or biological trait can be used as a bio-
metric characteristic:

• Universality: each person should have the characteristic,

• Distinctiveness: any two persons should be sufficiently different
in terms of the characteristic,

• Permanence: the characteristic should be sufficiently invariant
(with respect to the comparison criterion) over a period of time,

• Collectability: the characteristic can be measured quantitatively,

• Performance, which refers to the achievable recognition accu-
racy and speed, the resources required to achieve the desired
recognition accuracy and speed, as well as the operational and
environmental factors that affect the accuracy and speed,

• Acceptability, which indicates the extent to which people are
willing to accept the use of a particular biometric identifier
(characteristic) in their daily lives, and,

• Circumvention, which reflects how easily the system can be
fooled using fraudulent methods.
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C
P R O P E R S C O R I N G R U L E E X A M P L E S

Popular examples for proper scoring rules are [18, 37, 38]:

• Brier or Quadratic score (strictly proper):

Sbrier =
∑N
i=1 p

2
i − 1,

Lbrier(p,q) = −
∑N
i=1 (δqi − pi)

2 = 2pq −
∑N
i=1 pi

2 − 1;

• Spherical score (strictly proper):

Ssph =
(∑N

i=1 p
α
i

)α−1

,

Lsph(p,q) = pα−1q

(
∑N
i=1 p

α
i )
α−1
α

;

• Zero-one loss (not-strictly proper):

Lzero(p,q) =

0, if q = p,

1,otherwise
;

• Logarithmic score as negative Shannon entropy (strictly proper):

Slog(p) = −Hp =
∑N
i=1 pi logpi,

Llog(p,q) = logpq.
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Abstract
It is generally conceded that duration variability has huge ef-
fects on the biometric performance of speaker recognition sys-
tems. State-of-the-art approaches, which employ i-vector repre-
sentations, apply adaptive spherical (AS) score-normalizations
to improve the performance of the underlying system by us-
ing specific statistics on reference and probe templates obtained
from additional datasets. While variation and likely a reduction
of the signal duration from reference to probe samples is un-
predictable, incorporating duration information turns out to be
vital in order to prevent a significant raise of entropy.

In this paper we propose a duration-invariant extension
of the AS-Norm, which is capable of computing more robust
scores over a wide range of duration variabilities. The pre-
sented technique requires less computational effort at the time
of speaker verification, and yields a 19% relative-gain in the
minimum detection costs on the current NIST i-vector challenge
database, compared to the provided NIST i-vector baseline sys-
tem.
Keywords: biometrics, speaker recognition, i-vector, score nor-
malization, duration invariance

1. Introduction
In past years speaker recognition has been incorporated in gov-
ernmental, forensic, and industry applications [1] with a wide-
spread scope ranging from court-cases [2] over preventing con-
tact center frauds [3] to key security solutions for high-secure
financial transactions [4]. Within conventional speaker recog-
nition systems characteristic traits of an individual’s voice are
extracted in order to compare them against voice templates of
known identities, i.e. speakers can either be verified or identi-
fied.

Recent studies demonstrated the feasibility of text- and lan-
guage-independent speaker recognition by clustering the acous-
tical features space using Gaussian Mixture Models (GMMs),
where the resulting universal cluster is referred to as Universal
Background Model (UBM) [5, 6]. A speaker’s feature space is
then derived by a mean-only UBM adaptation with respect to
the speaker’s sample where the resulting mean-vector charac-
terising a speaker’s sample is defined as supervector [5, 6]. By
analysing characteristic factors of the supervector offset from
the UBM means, denoted by ~µUBM, Dehak et al. [7] intro-
duced the identity-vector (i-vector) approach, which decom-
poses a speaker- and sample-dependent supervector ~s into a
low-dimensional high-discriminative i-vector ~i by using a to-

tal variability matrix T which is trained by all prior-observed
variational speaker and channel effects:

~s = ~µUBM + T~i. (1)

Consequently, i-vectors represent adequate features within a
speaker-personalized space.

1.1. Motivation and Contribution

Presence of speech signal noise, which can occur due to
e.g., environmental noise, different microphones, channel-
effects, within-speaker variabilities such as ageing, or duration-
mismatches resulting in bad-estimated speaker subspaces,
causes insufficiently estimated supervectors and i-vectors. In
order to establish a robust speaker recognition systems increas-
ing intra-class speaker variabilities need to be reduced towards
a minimum.

This paper places emphasize on the reduction of i-vector
noise arising due to duration variabilities. Effects of duration
mismatches between enrollment and verification samples on i-
vectors have been evaluated within the last years pointing out
that especially on short-term samples entropy rises much more
than on long-term samples, which deliver sufficient statistics for
i-vector extraction [8, 9].

Recently, i-vector performances have been analyzed with
respect to sample durations and the according acoustical space
[10]. A linear interrelation between the logarithmic duration
and the amount of unique phone classes has been reported, i.e.
the existence of so-called acoustic holes has been claimed, de-
pending on a samples duration which actually strongly influ-
ences the statistical sufficiency of estimating speaker subspaces.
As a consequence, it has been suggested to evaluated score-
calibration methods according to logarithmic duration classes.

Since there are different variations according to the duration
classes, duration-based processing is very effective as we will
show on the 2013–2014 NIST i-vector challenge where we ap-
plied a standard AS-norm to the NIST baseline system and ex-
tended the AS-norm by duration-sensitive development i-vector
comparisons. By comparing i-vectors of the same duration-
range, variations due to duration mismatches can be estimated
and normalized more sufficiently.

1.2. Organization of Work

This paper is organized as follows: Sect. 2 summarizes rele-
vant related work regarding duration mismatch compensation.
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In Sect. 3 the proposed duration-based extension of the stan-
dard AS-norm will be presented in detail. Experimental results
in terms of biometric performance and evidence strength are
presented in Sect. 4. In Sect. 5 conclusions are drawn.

2. Related Work
Mandasari et al. [8] evaluated i-vector systems using AS-norm1

with respect to different sample durations. The authors demon-
strated that basic i-vector systems significantly suffer from du-
ration mismatches in terms of forensic applications. By em-
ploying the standard AS-norm, gains in evidence strength and
performance could be obtained over several duration mismatch
groups, by limiting evaluations to full-duration i-vectors. How-
ever, although gains were also yielded on short-duration sam-
ples, the vast majority of these systems tend to suffer from mis-
calibration [8, 10, 11].

Kanagasundaram et al. [9] and Sarkar et al. [12] examined
Gaussian Probabilistic Linear Discriminant Analysis (GPLDA)
as a scoring alternative to the basic cosine comparator with fo-
cus on short-duration samples. GPLDA scores the likelihood
of two i-vectors by a prior trained Gaussian model of i-vector
between- and within-variances. Therefore, GPLDA assumes
hidden speaker between- and within-variation factors fb, fw for
an extracted i-vector ~i. Additional i-vector noise is compen-
sated by these factors together with a-priori trained between-
and within-variabilities Vb,Vw, such that a more robust i-
vector representation ~w can be obtained by:

~w =~i+ Vbfb + Vwfw + ~r (2)

where ~r represent the residuals. A log-likelihood ratio (LLR)
score is then obtained by estimating, whether the two i-vectors
were emitted by same speaker or not, by assuming Gaussian
distributed i-vectors~i, ~w. In order to compensate duration mis-
matches and variabilities as additional noise, GPLDA was addi-
tionally trained with low-durational samples in [9, 12]. In gen-
eral, more robust systems could be established, however, these
systems yield huge performance losses with respect to lower
durational probe samples.

Hasan et al. [10] analyzed effects of template and probe
samples with respect to the acoustical feature space. They re-
ported a linear dependency between the logarithmic duration
and the amount of unique phone classes observed within a sam-
ple. Hence, they evaluated i-vector GPLDA performance with
respect to duration groups, which were set up logarithmically.
They improved the recognition robustness in terms of the ac-
tual detection cost by using score-calibration methods employ-
ing template and probe durations as quality measurements.

Building on the approach in [10], Mandasari et al. [11]
proposed more score-calibration methods taking template and
probe durations dt, dp into account by using Quality Model
Functions (QMFs) in order to reduce recognition entropy. For
this purpose they trained calibration function parameters by lin-
ear regression, i.e the original score S is recalibrated to S′,

S′ = x0 + x1S + x2QMF (dt, dp), (3)

where x0,1,2 are parameters to be determined by linear regres-
sion using an additional database. Both, Hasan et al. [10] and
Mandasari et al. [11], improved recognition robustness by re-
ducing entropy employing score-calibration methods and the
GPLDA scoring in order to compensate for noise.

1In the paper they refer to AS-norm as normalized cosine kernel.

Other researches emphasized on earlier processing stages:
Fatima and Zheng [13], and Zhang et al. [14] propose phone-
based speaker modeling by Gaussian-Mixture-Models which
could be extended to phone-based i-vectors that would ex-
tend computational costs on signal processing compared to the
standard i-vector approach. Stadelmann and Freisleben [15]
discussed the usage of dimension-decoupled UBMs to reduce
over-fitting of the acoustical space clustering. Hautamäki et
al. [16] suggested minimax i-vector extractors to reduce mis-
matches within an i-vector neighbourhood. Since all these ap-
proaches are applied on processing stages before an i-vectors
exists, they are not applicable towards the 2013–2014 NIST i-
vector challenge, thus we emphasize later-stage noise reduction
techniques.

However, if noise was produced by system processing, then
score-calibration and exhaustive GPLDA training phases might
deliver more significant gains in reducing error-propagation ef-
fects than in increasing i-vector performance abilities. In this
paper we follow on a rather simple yet effective approach,
extending the standard AS-norm by duration-invariant statisti-
cal treatments, which increase performance and omit entropy-
emission.

3. System Architecture
The proposed system relies on (1) an i-vector baseline system
on which (2) AS score-normalization is applied. In order to
compensate for effects of varying durations after i-vector ex-
traction the AS-norm will be applied in a (3) probe-duration-
sensitive manner. Fig. 1 depicts the general system design,
which will be described in detail in the following subsections.

3.1. i-Vector Baseline System

The i-vector baseline system is designed according to the NIST
baseline system of the 2013–2014 i-vector challenge which
takes benefits of recent methodologies in i-vector processing
such as mean-subtraction, whitening transformation and length-
normalization [17, 18, 19], i.e. i-vectors can be interpreted as
unit-vectors.

The i-vector means~iµdev-set represent an a-priori average off-
set of characteristic factors obtained from the UBM. By apply-
ing mean-subtraction the i-vector space is centered. However, i-
vector elements, as the space axes, are correlated due to GMM-
supervector element-correlations which occur due to the mean-
concatenation of the GMM joint-mixtures. Hence, whitening is
applied in order to transform correlated data into uncorrelated
data exhibiting uniform variance, i.e. i-vectors are transformed
to an uncorrelated space where the origin represents the average
UBM-supervector deviation. Accordingly a whitening matrix
Wdev-set is computed on a-priori known i-vectors of the devel-
opment set (dev-set), such that an eigen-decomposition of the
i-vector variances is used to transform the i-vector covariance
matrix into an identity matrix.

In order to deal with non-Gaussian behaviors, in the base-
line system length-normalization is applied on the i-vectors as
well [17], i.e. i-vectors can be also interpreted as features rep-
resenting unit vectors in a speaker-characterizing space. Raw
i-vectors ~iraw are transformed into unit i-vectors ~iunit applying
the following equation:

~iunit =
(~iraw −~iµraw,dev-set )Wraw,dev-set

||(~iraw −~iµraw,dev-set )Wraw,dev-set||
(4)

where we will further denote~i =~iunit to ease notations.
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Figure 1: Basic operation mode of the proposed duration-sensitive speaker recognition system.

Speaker references are created by averaging multiple en-
rollment i-vectors resulting in noise-robust templates [19, 20],
which can be further interpreted as a sample-concatenated sim-
ulation where higher-sufficient Baum-Welch statistics are av-
eraged, such that more speaker-characterizing i-vectors are ex-
tracted. At the time of verification the cosine similarity compar-
ison between template and probe i-vectors is used according to
the NIST baseline system [19]:

S(~it,~ip) =
~iTt ~ip

||~it|| ||~ip||
(5)

where the i-vectors are already length-normalized, i.e. only the
numerator term of Eq. 5 is required for score computations.

3.2. AS-Norm

For the purpose of applying standard score-normalization meth-
ods by preserving the symmetry between i-vectors, Kenny [21]
introduced the spherical normalization (s-norm). Thereby
the zero score-normalization (z-norm) computes the score
mean µz-norm and standard deviation σz-norm of a template i-
vector compared against an i-vector collection Z, and the
test score-normalization (t-norm) compares similar parameters
µt-norm, σt-norm of a probe i-vector against an i-vector collection
T. Hence, a verification score S can be normalized by centering
impostor scores having unit variance by known impostor score
distributions with respect to a template i-vector and of a probe
i-vector as if it was an impostor i-vector,

S′ =
1

2

(
S − µz-norm

σz-norm
+
S − µt-norm

σt-norm

)
. (6)

The AS-norm S′ differs from s-norm by the scores which are
used to compute the z/t-statistics: rather than using all scores,
only the most competitive scores (e.g. top-100) are applied to
model according speaker cohorts. Dehak et al. [22] applied the
AS-norm on i-vectors and showed that the score normalization
can be already applied on comparison-level as a normalized co-
sine scoring,

S(~it,~ip) =
(~it −~iµz-norm )T (~ip −~iµt-norm )

||Σz-norm~it|| ||Σt-norm~ip||
(7)

where ~iµz-norm ,~iµt-norm denote mean i-vectors of z- and t-norm
sets, and Σz-norm,Σt-norm are according diagonal covariance ma-
trices.

3.3. Proposed Duration-invariant Approach

In order to build upon the idea of only taking significant com-
parisons into account, AS-norm is adapted to differentiate be-
tween probe sample durations. As previously mentioned, the
presence of acoustic holes increases the entropy of shorter voice
samples, which motivates the construction of different i-vector
sufficiency-classes. Hence, the AS-norm is extended such that
only comparisons are used for AS-parameter estimation that
have the same quality as the current probe presented for veri-
fication.

In terms of duration as a quality metric, Q quality classes
can be denoted as: Q = {Λ0, . . . ,ΛQ} representing i-vector
sufficiency classes. Samples are then associated by their loga-
rithmic duration ds to a sufficiency class Λc by the lowest log-
duration distance,

argΛc
min | log(ds)− log(dΛc)|. (8)

3.3.1. i-vector sufficiency classes

In the proposed system duration-based groups are defined for
the sufficiency classes, where we limit the number of quality
classes to Q = 5, i.e. obtained results can be directly compared
to those reported in [10, 11]. It was found that evaluations car-
ried out for the adaptive log-duration range from Eq. 8 yielded
no significantly different results. Thus, sufficiency classes are
denoted according to the researches on acoustic holes of Hasan
et al. [10] and Mandasari et al. [11] and summarized in Table 1,
where Λfull is intended to comprise all expected high-sufficient
i-vectors which might cause non-optimal results, but preserves
low-computation efforts.

Table 1: Sufficiency classes and corresponding durations

Sufficiency class Duration

Λ5 0–5 sec
Λ10 5–10 sec
Λ20 10–20 sec
Λ40 20–40 sec
Λfull ≥ 40 sec

3.3.2. Parameter Estimation

For the z- and t-norm parameter AS-cohorts are pre-selected in
various ways:
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• z-norm simulates impostor verifications on averaged en-
rollment templates, thus only Z i-vectors will be used
which are belong to the same sufficiency class as the
probe i-vector:

Z = {~iΛdp
|max

top100
S(~it,~iΛdp

)}, (9)

• t-norm simulates impostor verifications comparing the
probe i-vector to templates of the development set, where
enrolled speakers have full i-vectors, where the vast ma-
jority of durations are higher than 60 seconds, i.e. only
T i-vectors will be used extracted from samples with
longest durations:

T = {~iΛ>60 |max
top100

S(~it,~iΛ>60)}. (10)

3.3.3. Score estimation and expected improvements

The proposed duration-adaptive extension of AS-norm nor-
malizes the scores according to Eq. 6. By placing emphasis
on duration-based sufficiency classes, recognitions are treated
duration-invariant, i.e. normalized scores are expected to be dis-
tributed without creating entropy due to duration-mismatches.
Further, an overall improvement can be expected, since scores
of all sufficiency classes are normalized to more similar distri-
butions of genuine and impostor scores. As a consequence, no
additional entropy is expected,which could arise due to score-
distribution mismatches by fixed across-classes thresholds.

Fig. 2 illustrates how duration-differing samples will be
processed by the proposed AS-norm extension.

Development set 

i-vectors

Subset

z-norm

Subset

t-norm

Probe i-vector

with duration

Λsubset

dprobe == dΛ

Λ>60

Figure 2: Processing duration-differing samples by suggested
duration-based AS-norm extension.

4. Experimental Evaluation
Experiments are carried out on the 2013–2014 NIST i-vector
challenge dataset [19] in order to evaluate the baseline, the
standard AS-norm, and the duration-based AS-norm extension.
We performed ten 5-fold cross-validations2 on the enrollment
database, and we submitted each system also on the i-vector
challenge where preliminary results were computed by NIST
using 40% of the whole evaluation set.

4.1. Experimental Set-up

The NIST i-vector challenge dataset consists of 1 306 speaker
identities within enrollment and verification sets. For each iden-
tity 5 enrollment i-vectors are given with the according sam-
ple duration. The verification set contains 9 634 probe i-vectors
with the according sample duration as well. Further, a develop-
ment set of 36 572 independent i-vector with sample durations

2On each validation run one enrollment i-vector was randomly taken
as a probe while the remaining i-vectors were used to create a template.

is given for feature space estimations, independent of the eval-
uation data3.

Focusing on performance evaluation, we place emphasize
on the biometric recognition performance in terms of the Equal-
Error-Rate (EER), and the false non-match rate at a 1% false
match rate (FMR100). In accordance to the ISO/IEC IS 19795-
1 [23] the FNMR of a biometric system defines the proportion
of genuine attempt samples falsely declared not to match the
template of the same characteristic from the same user supply-
ing the sample. By analogy, the FMR defines the proportion of
zero-effort impostor attempt samples falsely declared to match
the compared non-self template. As score distributions overlap
EERs are obtained, i.e. the system error rate where FNMR =
FMR. Further, we estimate the entropy and biometric perfor-
mance in terms of the application-dependent4 minimum detec-
tion cost function [19]

minDCF = min FNMR + 100 FMR, (11)

and the application-independent entropy by the log-likelihood
ratio cost [25] of genuine and impostor scores SG, SI

Cllr =

∑
g∈SG ld(1 + 1

eSg
)

2|SG| +

∑
i∈SI ld(1 + eSi)

2|SI| . (12)

4.2. Data Analysis

The provided i-vectors exhibit 600 dimensions, and their ac-
cording sample durations are log-normal distributed as shown
in Fig. 3. Most of the development sample durations are in the
20–40 second range, i.e. these samples are influencing devel-
opment set based i-vector processing such as mean-subtraction
and whitening.
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Figure 3: Log-normal distributed sample durations of develop-
ment set data with respect to i-vector sufficiency classes

The vast majority of development samples are located in
Λfull (34.7%), Λ40 (31.1%), and Λ20 (23.1%), then: Λ10

(9.0%), and Λ5 (2.1%). Intentional, all i-vectors have been cen-
tralized to the origin by mean-subtraction in the preparation of

3The usage of information about other trials within the evaluation
data is not allowed by the NIST challenge protocol [19].

4NIST set the i-vector challenge operating point similar to NIST
SRE’10 at an effective prior π̃ = 1

101
[19, 24] with a Bayes threshold

of η ≈ 4.6.
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Figure 4: Biometric performance of i-vector sufficency classas: (a) minDCF, (b) EER.

the baseline system, but an unpaired Student t-test of indepen-
dence showed that i-vector elements have significantly different
mean-values compared between all development set i-vectors
and with respect to each sufficiency class. Table 2 compares the
amount of significantly independent i-vector elements accord-
ing to their sample durations assuming equal variance5.

Table 2: Student t-test of independent i-vector elements with
respect to sufficiency classes

dev-set all Λfull Λ40 Λ20 Λ10

Λ5 84 141 91 66 44
Λ10 142 230 140 70
Λ20 132 246 118
Λ40 35 180
Λfull 172

Once mean-subtraction and whitening has been applied,
Λ40 i-vectors exhibit the lowest significant offset to the space
origin by having the second most impact on both i-vector pro-
cessing due to their representative amount. Further, the most-
sufficient i-vectors have the greatest gap compared to all devel-
opment set i-vectors and to each sufficiency class with at least
140/600 significant different mean positions. Hence, within
the subspace of Λ40 i-vectors seem to be between the subspaces
of high-insufficient and high-sufficient i-vectors. An opposite
effect could be observed on short-duration samples, where the
according i-vectors have larger mean-differences to i-vectors of
more than 20 seconds than to i-vectors of comparable short
duration samples (less than 20 seconds). This effect may be
caused due to high variability of insufficient estimated i-vectors
of short-duration samples, i.e. i-vectors of less than 20 sec-
ond samples are distributed in subspaces that are more close to
themselves than to more-sufficiently estimated i-vectors.

That is, offset vectors can be assumed for each sufficiency
group, which effect the cosine score values due to angle changes

5Results of an unpaired Student t-test assuming un-equal variances
yielded negligible differences in the results.

between i-vectors6. These facts underline the need for compen-
sating scoring statistics with respect to sample durations.

4.3. Performance Evaluation

Focusing on the baseline system the highest performance loss
in terms of minDCF is observed for low-durational samples, see
Table 3. As it can be seen, Λ5 i-vectors yielded the most expen-
sive detection costs with 0.932 which is very close to a random
recognizers performance of minDCF = 1. I-vectors stem-
ming from the class with the longest sample duration yielded the
best observed minDCF, i.e. 0.219. However, on all other qual-
ity classes of insufficient i-vectors both AS-normalizations yield
significant gains where the duration-invariant AS-norm outper-
forms both other systems on samples shorter than 20 seconds.
On 20–40 second samples both normalizations could outper-
form the baseline approach, where AS-norm without duration-
sensitive extension achieved the best minDCF for Λ40 i-vectors.
Hence, AS-norm is necessary on insufficiently estimated i-
vectors, and the proposed duration-based extension can yield
up to 19.1% more relative-gain than the standard AS-norm.

Table 3: Duration group performances: avg. minDCF

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.932 0.721 0.520 0.327 0.219
AS-norm 0.824 0.592 0.434 0.288 0.236
dAS-norm 0.646 0.494 0.413 0.303 0.279

In terms of biometric recognition performance both AS-
norm approaches outperform the baseline as well, see Table. 4.
Again, the proposed duration-invariant AS-norm yields sig-
nificant gains on samples shorter than 20 seconds on which
a performance break-down for the standard AS-norm can be
observed. However, on higher-sufficient i-vectors the stan-
dard AS-norm outperforms both other systems, which could
be caused due to the non-duration-invariance within the Λfull

6Which actually is additive noise that should be well-compensable
by, e.g. GPLDA scoring.
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i-vectors. EER and minDCF performance comparisons among
quality classes Q are shown in Fig. 4.

Table 4: Duration group performances: avg. EER

System Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 8.74 3.92 2.68 1.10 0.83
AS-norm 10.51 4.35 2.32 1.04 0.71
dAS-norm 5.63 3.35 2.32 1.09 1.05

Across the entire set of classes the proposed duration-based
AS-norm outperforms both other systems, see Table 5. In sum-
mary, the proposed duration-invariant AS-norm yields a 19.5%
relative-gain in EER, a 32.6% relative-gain in FMR100, and a
15.0% relative-gain in minDCF compared to the baseline sys-
tem on the cross-validation. Further, the duration-invariant AS-
norm significantly outperforms the standard AS-norm which
can also be seen in Fig. 5.

Table 5: System performances: avg. EER, FMR100, minDCF

System EER FMR100 minDCF Challenge7

Baseline 2.56 5.15 0.428 0.386
AS-norm 2.49 4.48 0.378 0.331
dAS-norm 2.06 3.47 0.364 0.312

The results were approved by the preliminary evaluation of
the 2013–2014 NIST i-vector challenge, where the application
of the standard AS-norm resulted in a 14.2% relative-gain, and
the duration-invariant extension resulted in a 19.2% relative-
gain in minDCF.

Fig. 5 compares the best cross-validation systems accord-
ing to minDCF within a Detection Error Trade-off diagram.
The duration-invariant AS-norm improves the biometric perfor-
mance of the baseline system at all operating points, while the
standard AS-norm mainly yields gains in high-secure regions,
i.e. operating points at low FMRs. In this regions both AS-
normalizations exhibit equal recognition accuracy.

Hence, the proposed duration-invariant AS-norm extension
is applicable to a larger range of scenarios compared to the
standard AS-norm. While the duration-invariant AS-norm only
obtains slightly lower error-rates on minDCF-operating points
compared to the standard AS-norm, another advantage of the
duration-invariant treatment is observed within entropy evalua-
tions.

4.4. Entropy Evaluation

Table 6 compares the total Cllr of the three systems over all
scores, and among each quality class. On Λ5 i-vectors the base-
line and the standard AS-norm perform similar to or worse than
a random recognizer, and on samples having more than 5 sec-
onds the standard AS-norm significantly outperforms the base-
line system. On high-sufficient i-vector the lowest application-
independent entropy was measured for the standard AS-norm
with Cllr = 0.05, representing a very low cost of the LLR-
scores. However, on sample durations lower than 40 sec-
onds the duration-invariant AS-norm outperforms both other
approaches by yielding a maximum LLR cost of Cllr = 0.35 on

7The results were obtained by the 2013–2014 NIST i-vector online
leaderboard which comprised 40% of the total evaluation data.
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Figure 5: Systems detection error tradeoff: best systems from
10 cross-validations according to their minDCF.

high-insufficient Λ5 i-vectors. Overall the suggested AS-norm
extension exhibits the lowest application-independent entropy
by yielding relative-gains of 88.8% and 41.2%, respectively.

Table 6: Average entropy comparison: all scores & duration-
groups

System all Λ5 Λ10 Λ20 Λ40 Λfull

Baseline 0.89 0.95 0.93 0.92 0.89 0.86
AS-norm 0.17 1.18 0.41 0.18 0.08 0.05
dAS-norm 0.10 0.35 0.20 0.11 0.07 0.07

Fig. 6 illustrates the Cllr gains on normalized DCFs or like-
wise normalized Bayesian entropy plots, where the actual DCF
(actDCF) represents application-dependent entropy, and the
minDCF represents application-dependent entropy on a well-
calibrated system — in these terms Cllr represents the area un-
der actDCF, since we want to place emphasize on robustness,
i.e. systems which do not require score-calibration. Due to
the cosine scoring most scores of the baseline system lie within
the range [−1,+1], hence, the lowest DCF. The smallest dif-
ference between actual and minimum DCF was observed on
η ≈ 0, on any other operating point the baseline system is
effected by huge mis-calibrations. Calibration-improvements
were gained by the standard AS-norm, which delivers adequate
calibration for a different application-points (actDCF curve be-
ing equal to minDCF curve). However, the suggested duration-
invariant score-normalization yields well-calibrated scores on
the vast majority of application-points, which have significant
error-rates. That is, the proposed duration-invariant enables an
enhanced statistical treatment of quality classes, which is ap-
proved by a very low overall entropy emission in terms of Cllr.

4.5. Discussion

Quality classes of i-vector sufficiency were motivated by as-
suming acoustical holes depending on the logarithmic sample
duration. By observing i-vector mean offsets between the qual-
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ity classes Q, the need of duration-invariant recognition pro-
cesses were empirically motivated in order to compensate for
i-vector subspace mismatches. Hence, the AS-norm was ex-
tended with respect to duration-based quality classes as pro-
posed in Sect. 3.3.

The experimental results showed that statistical effects of
acoustical holes causing entropy are easy-compensable by an-
alyzing their i-vector subspace variations according to same-
shaped quality classes. Hence, additional processing-entropy
was prevented for many operating points, and significant per-
formance gains were yielded on short-duration samples as well.
However, on high-sufficient i-vectors the standard AS-norm
provides slightly better results, thus combined systems are con-
sidered promising with respect to recognition performance.
Furthermore, more detailed separation of quality classes within
Λfull are expected to yield further gains within the proposed
duration-invariant AS-norm.

Placing emphasize on the computational complexity the
standard AS-norm requires all 36 572 development set i-vectors
for either of the z-norm and t-norm sets in order to determine
the top100 cohorts. In contrast, the duration-invariant extension
utilizes at most 34.7% of the data amount for z-norm for Λfull

quality class normalizations, and 19.4% of the complete devel-
opment set. Thus, proposed extension turns out to be highly
suitable to units having less computational resources.

5. Conclusion
The proposed duration-invariant extension of AS-norm is
proven to be highly suitable for applications in numerous use
cases regarding industry as well as forensic, since it exhibits
high performance by robust evidence strength. Hence, entropy
in short-term duration classes could be reduced significantly,
and a 19% relative-gain in biometric performance can be ob-
served compared to the baseline system, proving the sound-
ness of the presented approach. Further, the overall forensic
evidence strength could be significantly increased, reducing the
actual LLR cost to Cllr = 0.10.

Building upon our reproducible technique, future research
might investigate template and probe normalizations as per-
formed by Eq. 7 where quality-class-dependent mean off-
sets are vanished to achieve higher recognition performances.
Hence, more sufficient comparators such as GPLDA or the two-
covariance model [26], GPLDAs dot-product variation for fast
scoring, can be applied on low-entropy i-vectors to concern
more signal-based rather than processing-based entropy.

Further, duration-based quality classes can be investigated
on invariant treatments towards their specific characteristics as
i-vector subspaces on earlier processing stages such as duration-
based i-vector extraction techniques.
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